

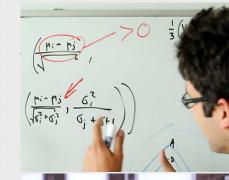
HPC Systems Engineering with the Interaction Room

Helmut Neukirchen, Matthias Book, Morris Riedel
University of Iceland
{helmut, book, morris}@hi.is

Interaction Room Might Work Well for Business Applications... ...but HPC Is Not a Business Application

- In fact, similar considerations apply as well, e.g.:
 different implicit assumptions/knowledge between stakeholders:
- HPC projects often start with a domain expert writing HPC code.
 - E.g. Science/Engineering PhD student with no formal education in HPC nor Computer Science.
- The same problems at different occasions:
 - Code survives often academic scientists with temporary contracts:
 Code needs to be handed over to new scientists.
 - ⇒ Implicit assumptions and knowledge lost.
 - Domain expert sooner or later struggles with HPC problems: code needs to be handed to HPC experts, e.g. at a supercomputing centre.
 - ⇒ Implicit assumptions and knowledge need to be transferred.

Same within the CoE RAISE: Experts with different knowledge working together.

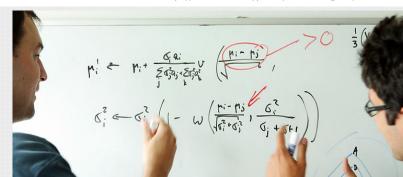


Interaction Room for HPC?

CC BY 2.0 Steve Wilson https://www.flickr.com/photos/125303894@N06/14387366382

- Goal: Facilitate collaboration of experts from
 - the natural science/engineering domain,
 - the HPC domain,
 - the AI/ML domain,
 - the computer science/software engineering domain.
- Adapt proven Interaction Room concepts:
 - But: canvases needed that are specific to HPC/AI/ML needs.

Public domain https://www.pigsels.co



Interaction Room for HPC!

CC BY 2.0 Steve Wilson https://www.flickr.com/photos/125303894@N06/14387366382

- HPC/AI-specific canvases that address:
 - Crucial interdisciplinary discussion points,
 - Typical HPC/AI software development phases.

- Different domains needing different canvas types, e.g.:
 - Simulation sciences ("classic" HPC),
 - Data sciences (HPDA) / AI/ML.
 - So far: Interaction Room canvases developed for HPC simulation sciences...
 - ...to foster collaboration within CoE RAISE:
 go beyond ⇒ canvases for HPC combined with AI.

Book, Riedel, Neukirchen, Goetz: Facilitating Collaboration in High-Performance Computing Projects with an Interaction Room.
4th ACM SIGPLAN International Workshop on Software Engineering for Parallel Systems (SEPS 2017)

Crucial Interdisciplinary Communication Points in HPC Simulation Science Projects

- Science/Engineering domain experts need to help HPC experts understand, e.g.:
 - Research question we trying to answer?
 - What assumptions/simplifications are made?
 - What parameters and variables are there?
 - How do they affect each other? How do they evolve over time?
- HPC experts need to validate technical decisions with domain experts, e.g.:
 - Domain decomposition (How to map the problem most efficiently to the HPC cluster?),
 - HPC cluster HW architecture? (CPU or GPU? Memory-intensive or compute-intensive?),
 - Memory model (Distributed memory? Shared memory? Hybrid?),
 - Communication patterns (Choice of communication type? Ghosts/halos?).

Typical HPC Simulation Science Software Process to be Supported by Interaction Room

1. Understand the problem domain:

Domain concepts to be supported by IR

a) In general (goal and scope),

Domain concepts to be supported by IR

- b) In detail. (How would serial problem domain code look like?)
- 2. Perform appropriate domain decomposition, choose appropriate communicators, etc.

HPC concepts to be supported by IR

- Implement communication between processes/threads; mix into code of problem domain.
- 4. Test and validate simulation model and code.
- Optimize accuracy, tune performance (specific to HW architecture).

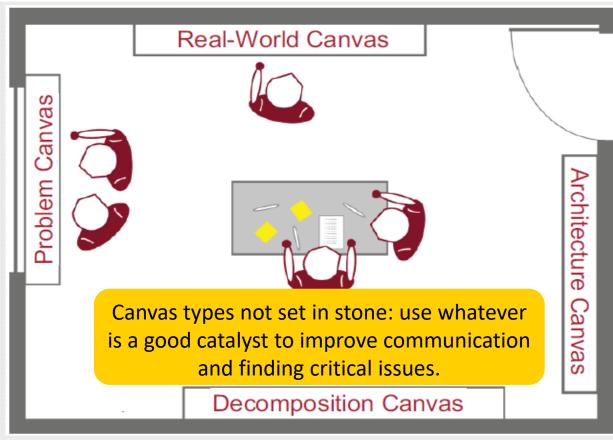
HPC concepts to be supported by IR

Interaction Room Canvases for HPC Simulation Science Projects

Problem canvas:

 Goal and scope of research question (=the science domain).

Real-world canvas:


 Description of the pertinent aspects of the science domain.

Decomposition canvas:

Breakdown of scientific model into parallelizable units.

Architecture canvas:

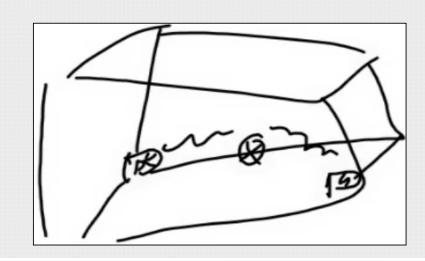
 Implementation of simulation on suitable HPC technology/HW architecture.

Not necessary sequential flow, but iterative refinement of canvas contents.

Problem Canvas

Goal and scope of research question about the domain

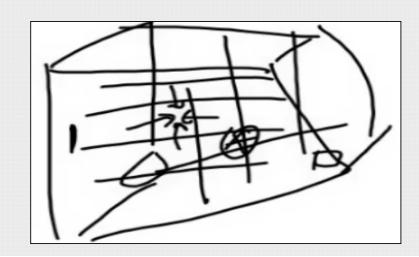
- Domain experts collect:
 - Research question,
 - Boundary conditions,
 - Assumptions,
 - Abstractions,
 - Quality requirements.
- Example: Heat dissipation problem
 - **Research Question**: "What will the temperature in a room after running an air conditioner on one side and a heater on the other for several hours?"
 - Boundary conditions: Starting temperature, A/C and heater setting.
 - Abstractions: Consider heat transfer by air flow / convection only, not by radiation.
 - Assumptions: No moving objects in the room, no windows/doors.
 - Quality requirements: Temperature must be determined as double precision float.



Real-World Canvas

Description of the pertinent aspects of the domain

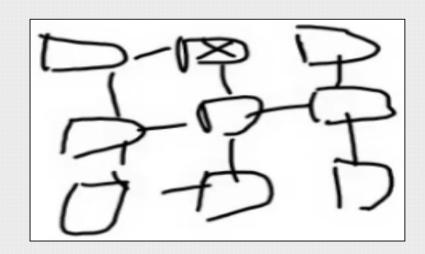
- Domain experts sketch static properties of the simulation space:
 - Physical laws,
 - Spatial setup.
- Domain experts sketch dynamic properties of simulation process:
 - Forces,
 - Events.
- Example: Heat dissipation problem
 - Room geometry, heater & A/C location,
 - Working of convection forces/air flows,
 - Appropriate formulae for physical laws.



Decomposition Canvas

Breakdown of scientific model into parallelizable units

- HPC experts sketch parallel model reflecting real-world model:
 - Static HPC aspects: Domain decomposition, data structures.
 - Dynamic HPC aspects: Communication patterns, halos/ghosts, adaptive mesh refinements, iterative numerical methods.
- Example: Heat dissipation problem
 - Adaptive mesh refinement,
 - Halo creation & communication strategy,
 - Cartesian communicator,
 - Iterative method to solve formula of physical heat transfer law.



Architecture Canvas

Implementation of simulation on suitable HPC technology

- HPC experts sketch mapping of parallel model to actual cluster HW:
 - Static aspects: Cluster architecture, memory model, tools.
 - **Dynamic aspects**: Communication protocols, I/O operations, checkpointing.
- Example: Heat dissipation problem
 - 1024 CPU cores,
 - Hybrid MPI/OpenMP,
 - Jacobi solver,
 - Parallel I/O,
 - Checkpoints every 2.000 iterations.

Summary

- Interaction Room facilitates collaboration of
 - domain experts (engineers/ scientists),
 - HPC experts,
 - AI/ML experts,
 - Computer science/software engineering experts.
- Canvas topic types not set in stone. (Add what is a good catalyst.)
- Not only a tool within CoE RAISE WP2,
 - but also outcome of CoE RAISE itself,
 - reaching beyond CoE RAISE.

Outlook

- To be developed during the CoE RAISE journey:
 - Canvases for AI/ML.
 - Including: combining HPC & AI, suitable annotations.

- Virtual (due to COVID) Interaction Room sessions with individual RAISE CoE WP2 partners:
 - Collaborative whiteboard software,
 - Caveat: lots of interaction lost in video meeting, e.g. body language,
 - Participants need to talk.
 - If no one talks, the best Interaction Room does not help but canvases are a good catalyst.

The CoE RAISE project receives funding from the European Union's Horizon 2020 — Research and Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Typical Pitfalls in HPC Simulation Science Projects

- Choosing appropriate solvers vs. reinventing the wheel
- Inefficient domain decomposition; load imbalance
- Dealing with differences between & unique strengths of individual architectures
- Dealing with different schedulers and their job scripts
- Debugging costs high amount of (possibly expensive) computing time
- Approximation of real world, insufficient validation data
- Integrating different physical models/processes with each other (multi-physics)
- Constant change of hardware, software, modus operandi
 - Constant need for porting; always an early adopter; changing code ownership
- Many of these revealed only in late (i.e. expensive to fix) project stages

Conceptual Levels in HPC Simulation Science Projects

- Problem level: Statement of research question / project goal and scope
 - Goal, context, scope: Research question, boundary conditions, assumptions, abstractions
 - Quality requirements: Accuracy, generalizability, performance
- Scientific level: Description of the pertinent aspects of the domain
 - Static aspects: Coordinates, variables, sources of influence, points of interest, physical laws
 - Dynamic aspects: Forces, interactions, events, timing, discontinuities
- Distribution level: Breakdown of the scientific model into parallelizable units
 - Static aspects: Domain decomposition, data structure, initial conditions
 - Dynamic aspects: Communication patterns, stencils, halos, ghosts, adaptive mesh refinements, iterative numerical methods
- Technical level: Implementation of distribution model on particular architecture
 - Static aspects: Cluster architecture, (parallel) file system, memory model, interconnect
 - Dynamic aspects: Communication protocols, I/O operations, available libraries, solvers

