
Software layout plan for a unique AI framework

Copyright notice:

2021-2023 CoE RAISE Consortium Partners. All rights reserved. This document is a project doc-
ument of the CoE RAISE project. All contents are reserved by default and may not be disclosed
to third parties without the written consent of the CoE RAISE partners, except as mandated by the
European Commission contract 951733 for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are acknowl-
edged as own by the respective holders.

Table of Contents

Project and Deliverable Information Sheet . 1

Document Control Sheet . 1

Document Status Sheet . 2

Document Keywords . 3

Table of Contents . 4

List of Figures . 6

List of Tables . 8

Executive Summary . 9

1 Introduction . 10

2 Overall Framework Software Layout Plan . 11
2.1 Applications . 11

2.1.1 A - Compute- and Data-Intensive CoE RAISE Use Cases 11
2.1.2 B - Domain-Specific CoE Use Cases [New] 13
2.1.3 C - NCC and Industrial Use Cases [New] . 13
2.1.4 D - Digital Twins Use Cases [New] . 13

2.2 Reference Architecture Elements . 13
2.2.1 E - Secure Shell (SSH) Low-Level Access 14
2.2.2 F - Jupyter Notebooks High-Level Access 14
2.2.3 G - Application Workflows [New] . 14
2.2.4 H - LAMEC API ONNX Standard Elements [New] 14
2.2.5 I - LAMEC API Community Platform Integration [New] 14
2.2.6 J - Community Platform OpenML Interoperability [New] 15
2.2.7 K - ClearML MLOps Platform Interoperability [New] 15
2.2.8 L - LAMEC API Facade Pattern Implementation [New] 15
2.2.9 M - LAMEC API Batch Script Repository [New] 16
2.2.10 N - LAMEC API Batch Script Generator [New] 16
2.2.11 O - Open HPC/AI Script Generator Web Page(s) [New] 16

2.3 Software Infrastructure . 16
2.3.1 P - Basic Science Libraries . 17
2.3.2 Q - Deep Learning Libraries [New] . 17
2.3.3 R - Distributed Deep Learning Tools [New] 17
2.3.4 S - Hyperparameter Tuner [New] . 18

2.4 Hardware Infrastructure . 18
2.4.1 T - Prototype HPC Systems [New] . 18
2.4.2 U - D-Wave Quantum Annealer System [New] 18
2.4.3 V - Modular HPC System JUWELS . 19
2.4.4 W - Container Technologies . 19
2.4.5 X - EuroHPC JU Hosting Sites [New] . 19
2.4.6 Y - EU HPC Systems [New] . 20

3 Updates of Selected Framework Components . 21

4

D2.13 Software layout plan for a unique AI framework

3.1 DALI Data Loader . 21
3.2 ClearML . 21

3.2.1 Purpose . 22
3.2.2 Deployment architecture . 22

3.3 Hyperparameter Tuning . 24
3.3.1 Ray Tune . 25
3.3.2 DeepHyper . 28

3.4 Basic Science Libraries: NumPy and scikit-learn 29
3.4.1 NumPy . 29
3.4.2 scikit-learn . 29

3.5 DeepSpeed . 30
3.6 LAMEC API . 31
3.7 Google JAX . 34
3.8 Quantum Support Vector Regression . 35
3.9 Workflow with Apache Airflow . 37

4 Adoption Plans of the Framework . 39
4.1 Adoption Plans for EuroHPC JU Hosting Sites . 39
4.2 EuroCC-2 National Competence Centers (NCCs) 42
4.3 Other Centers of Excellence . 44
4.4 Digital Twin Projects . 45
4.5 AI Communities through OpenML and ClearML . 48

5 Summary and Conclusions . 49

A Appendix A - Previous Framework Layout . 50
A.1 M9 - Initial Framework Software Layout Plan . 50
A.2 M18 - Updated Framework Software Layout Plan 52

B Appendix B - Mural Board List of CoE RAISE Use Cases 54

References . 55

List of Acronyms and Abbreviations . 58

CoE RAISE - 951733 5 28.02.2023

List of Figures

Figure 1: Unique AI Framework (UAIF) software layout plan at project month M26. There
have been several changes and additions marked as ‘NEW’ during the last re-
porting period. One core component update is the introduction of the Unique AI
Framework (UAIF) Load AI Modules, Environments, and Containers (LAMEC)
Application Programming Interface (API). 12

Figure 2: Throughput DT of Horovod and PyTorch with the NVIDIA Data Loading Library
(DALI) data loader Central Processing Unit (CPU) and Graphical Processing
Unit (GPU) version on the compressed ImageNet dataset [1] in images i per
second s over the number of Graphical Processing Units (GPUs) G. 21

Figure 3: Throughput DT of Horovod, PyTorch-Distributed Data Parallel (DDP), and Deep-
Speed with the native PyTorch data loader on raw ImageNet dataset, including
comparison with Horovod-NVIDIA Data Loading Library (DALI)-Central Process-
ing Unit (CPU) throughput. The largest configuration only features 512 Graphical
Processing Units (GPUs) in this case as no significant additional speed-up of the
native data loader is expected on larger configurations. The quantity DT is given
in images i per second s over the number of Graphical Processing Units (GPUs)
G. 22

Figure 4: Comparing experimental results for variants of a Transformer model in the ClearML
Graphical User Interface (GUI) . 23

Figure 5: Architecture of European Center of Excellence in Exascale Computing "Re-
search on AI- and Simulation-Based Engineering at Exacale" (CoE RAISE)’s
implementation of ClearML on an High-Performance Computing (HPC) platform. 24

Figure 6: Two levels of parallelism in distributed Hyperparameter Optimization (HPO). The
single model training runs distributed across workers with Horovod while different
trials run in parallel with Ray Tune. Image taken from the Horovod website. . . . 25

Figure 7: Comparison of the accuracy over the number of epochs (training iteration) for
the Asynchronous Successive Halving Algorithm (ASHA) algorithm (top), where
under-performing trials are stopped early, to a simple random search algorithm
(bottom), where every sampled configuration is fully trained on cifar-10. In the
Asynchronous Successive Halving Algorithm (ASHA) case, one training iteration
corresponds to six training iterations in the random search case. 100 trials are
evaluated in parallel on the Jülich Research on Exascale Cluster Architectures
(JURECA)-DC-Graphical Processing Unit (GPU) partition. 26

Figure 8: Example of using the Population Based Training (PBT) algorithm to discover an
optimal learning rate schedule over the number of epochs for a Convolutional
Neural Network (CNN) trained on cifar-10. 27

Figure 9: Scalability of Asynchronous Successive Halving Algorithm (ASHA), optimizing
the hyperparameters of the Transformer (TF) model from Task 4.2 of European
Center of Excellence in Exascale Computing "Research on AI- and Simulation-
Based Engineering at Exacale" (CoE RAISE). Each trial runs on one node (four
Graphical Processing Units (GPUs) of the Graphical Processing Unit (GPU) par-
tition of Jülich Research on Exascale Cluster Architectures (JURECA)-DC and
the time to evaluate 50 trials is measured. 28

6

D2.13 Software layout plan for a unique AI framework

Figure 10: Performance of distributed training with DeepSpeed vs. PyTorch-Distributed
Data Parallel (DDP) Application Programming Interface (API) on Jülich Research
on Exascale Cluster Architectures (JURECA). Depicted are average epoch time
t̄e (a), speed-up s (b), and efficiency e (c). The black dashed line represents the
ideal scenario (perfect scaling). 31

Figure 11: Example of kernel fusion: fusing multiple operations inside the same vectoriza-
tion loop. 34

Figure 12: Comparison of regression methods for predicting the learning curves of neural
networks trained on cifar-10. 36

Figure 13: How Apache Airflow can be integrated into High-Performance Computing (HPC)
system. 37

Figure 14: Adoption plans for the Unique AI Framework (UAIF) for potential European stake-
holders with links to the overall project impact plans. The plan is aligned with
plans of other relevant European Union (EU) activities like the EuroHPC Joint
Undertaking (JU), the EuroCC-2 project, other Euopean Center of Excellence
(CoE)s, and Digital Twins (DTs). 40

Figure 15: Adoption plans for the Unique AI Framework (UAIF) for potential European stake-
holders with a particular focus on the EuroHPC Joint Undertaking (JU) hosting
sites. The project aims to work with two new hosting sites every two month.
Based on the sustainability strategy of Work Package (WP)5 and realization
timeline of Joint Undertaking Pioneer for Innovative and Transformative Exas-
cale Research (JUPITER), the most efforts towards adopting the Unique AI
Framework (UAIF) on a European Exascale machine would be only in 2024.
The blue timeframe reflects the runtime of the European Center of Excellence
in Exascale Computing "Research on AI- and Simulation-Based Engineering at
Exacale" (CoE RAISE) project while the grey timeframe depends on the sustain-
ability of the project and work performed in Work Package (WP)5. 41

Figure 16: Adoption plans for the Unique AI Framework (UAIF) for potential European stake-
holders with a particular focus on industrial use cases and the EuroHPC Joint
Undertaking (JU) hosting sites where connections exist. The project aims to
work with two four different National Competence Center (NCC)s every two
month. Based on the sustainability strategy of Work Package (WP)5, the work
with other National Competence Center (NCC) will continue on 2024. The blue
timeframe reflects the runtime of the European Center of Excellence in Exas-
cale Computing "Research on AI- and Simulation-Based Engineering at Exa-
cale" (CoE RAISE) project while the grey timeframe depends on the sustainabil-
ity of the project and work performed in Work Package (WP)5. 43

Figure 17: Foreseen interactions and activities between European Center of Excellence in
Exascale Computing "Research on AI- and Simulation-Based Engineering at
Exacale" (CoE RAISE) and interTwin. 47

Figure 18: Initial Unique AI Framework (UAIF) software layout plan at M9. A detailed de-
scription of its components alongside more details on the requirements RQ1-
RQ7 are available in Deliverable D2.12. 51

CoE RAISE - 951733 7 28.02.2023

Figure 19: Updated Unique AI Framework (UAIF) software layout plan at M18. A detailed
description of its component updates are available in Deliverable D2.10. The
major updates include the key role of Hpyerparameter Tuners such as Ray Tune
and moving from Singularity to Apptainer for container solutions. 53

List of Tables

Table 1: JAX speed-up compared to NumPy. 35

8

D2.13 Software layout plan for a unique AI framework

Executive Summary

High-Performance Computing (HPC) become more broadly available for researchers, engineers,
and scientists through the transition process from the Partnership for Advanced Computing in Eu-
rope (PRACE) towards EuroHPC Joint Undertaking (JU) systems1 such as LUMI, LEONARDO,
VEGA, MELUXINA, KAROLINA, DISCOVERER, DEUCALION, or MARE NOSTRUM 5. The first
European Exascale system Joint Undertaking Pioneer for Innovative and Transformative Exascale
Research (JUPITER)2 will be installed at the Jülich Supercomputing Centre (JSC) in 2024. All these
systems are heterogeneous in nature with respect to their underlying hardware and software tech-
nologies. This raises challenges for HPC and Artificial Intelligence (AI) users to seamlessly use these
systems, and to easily port their applications, depending on their grant of computing time, between
the systems. The European Center of Excellence in Exascale Computing "Research on AI- and
Simulation-Based Engineering at Exacale" (CoE RAISE) develops a Unique AI Framework (UAIF)
design that guides users of these systems to specifically identified HPC/AI technologies that are pos-
sible to be used at scale. The goal is to lower the barrier of using and porting HPC/AI applications at
Exascale, especially helping those AI users that have not used HPC systems before.

The UAIF converged to a consistent set of components available for a broad range of HPC/AI applica-
tions. The Work Package (WP)2 activities have analyzed, benchmarked, and checked such compo-
nents with respect to their suitability for Exascale execution. The adoption plans of the UAIF started
with potential integrations at EuroHPC JU hosting sites or jointly working together with National Com-
petence Centers (NCCs) of the EuroCC-1 and EuroCC-2 projects3 on industrial use cases. Other
planned UAIF adoptions are within Digital Twin (DT) projects, e.g., Destination Earth4, or other
Euopean Centers of Excellence (CoEs). A core component of the UAIF is available as Load AI
Modules, Environments, and Containers (LAMEC) Application Programming Interface (API). This
interface enables a streamline access to HPC systems by abstracting from low-level software ver-
sions and module environment details. Through the adoption plans, this LAMEC API is continously
extended to support more European Union (EU) HPC systems over time. The LAMEC API also
paves the way for an easier adoption by new AI users that have previously not used HPC systems for
speeding up their trainings or inference, or have not used Hyperparameter Optimization (HPO) be-
fore. Examples include the integration of the LAMEC API within established AI community platforms
such as OpenML5 or ClearML6.

1EuroHPC JU HPC systems https://eurohpc-ju.europa.eu/about/our-supercomputers_en
2JUPITER Exascale HPC system

https://digital-strategy.ec.europa.eu/en/news/eu-enters-Exascale-era-announcement-new-supercomputing-hosting-sites
3EuroCC projects https://www.eurocc-access.eu
4Digital Twin Destination Earth https://digital-strategy.ec.europa.eu/en/policies/destination-earth
5OpenML platform https://www.openml.org/
6ClearML MLOps platform https://clear.ml/

CoE RAISE - 951733 9 28.02.2023

https://eurohpc-ju.europa.eu/about/our-supercomputers_en
https://digital-strategy.ec.europa.eu/en/news/eu-enters-Exascale-era-announcement-new-supercomputing-hosting-sites
https://www.eurocc-access.eu
https://digital-strategy.ec.europa.eu/en/policies/destination-earth
https://www.openml.org/
https://clear.ml/

D2.13 Software layout plan for a unique AI framework

1 Introduction

This document "Deliverable D2.13 - Software layout plan for a unique AI framework" of project month
M26 provides an updated description of the UAIF software layout plan and its components based on
co-design activities contributed by WP3 “Compute-Driven Use-Cases at Exascle” and WP4 “Data-
Driven Use-Cases at Exascle” of CoE RAISE. The monitoring and interaction of these co-design
activities by WP2 continues to be executed via the Interaction Room Methodology [2, 3] using Mural
Boards7 from the project inception. A list of the boards for each CoE RAISE is provided in Appendix
B (Mural Board List of CoE RAISE Use Cases).

The structure of this Deliverable is as follows. Section 2 describes the overall framework software
layout plan with a list of all considered components and an updated set of requirements. More details
on selected updated UAIF components are given in Section 3. Sec. 4 describes the adoption plans
of the UAIF with an emphasis on external stakeholders and the CoE RAISE Certification program.
Finally, a short summary of this Deliverable is provided and some conclusions are drawn in Sec. 5.

An initial software layout plan of the UAIF has been provided in "D2.12 - Software Layout Plan for a
unique AI Framework" (M9) and a short update of its components is also available in "D2.10 - Moni-
toring Report (M18)". Both previous versions of the UAIF have been added to Appendix A (Previous
Framework Versions) for the readers convenience. This Deliverable is thus intended to provide an
updated and comprehensive description for both project-internal and external adopters of the UAIF.
To facilitate external adoption of the UAIF, this Deliverable also describes the plan of the adoption
across EuroHPC JU hosting sites, EuroCC(-2) NCCs, and domain-specific communities through DTs
and CoEs.

This document is primarily intended for the WP3 and WP4 use case application experts of CoE RAISE,
potential adopters of the UAIF from the larger HPC community, and CoE RAISE stakeholders. It aims
at similar HPC/AI application use case developers such as in CoE RAISE that are part of the larger
EuroHPC and international HPC and AI community, and ecosystem. Additionally, the document
serves as an initial information for AI communities that never used HPC before, but want to adopt
certain elements of the UAIF. Already several projects, initiatives, and researchers have started to
adopt certain findings of CoE RAISE and the UAIF in the context of their own use cases outside of
the project’s application domains.

7Mural Boards https://mural.co

CoE RAISE - 951733 10 28.02.2023

https://mural.co

D2.13 Software layout plan for a unique AI framework

2 Overall Framework Software Layout Plan

This section provides a comprehensive overview of the framework software layout plan, including
major updates since the last reporting period. It briefly describes each component of the framework.
Previous versions of the UAIF have been added to Appendix A, including the initial version. They
were also published in Riedel et al. [4]. WP2, in cooperation with WP6, provides different trainings on
a wide variety of UAIF components or its approaches. They are all available in CoE RAISE’s YouTube
Channel8 and are listed below in the context of the UAIF components.

Figure 1 below shows the current software layout plan of the UAIF at project month M26 with several
new components and in-depth refinements on its core building blocks. Updates from the previous
Deliverable include merging several components to reduce the UAIF complexity, necessitating a re-
ordering of the alphabetic characters for each component. New components or major updates in the
UAIF design layout are marked with ‘NEW’ in Fig. 1. The figure includes several components that
are not directly under the control of CoE RAISE, but are identified as important dependencies for
the UAIF running on HPC systems. Furthermore, any type of use case application software such
as simulation sciences codes (e.g., using numerical methods based on known physical laws) that
integrate AI codes or cutting-edge Deep Learning (DL) models can be used in conjunction with the
UAIF components. Those use case applications and simulation sciences codes have been kept out
of Fig. 1 since CoE RAISE’s WP2 main focus is on supporting AI.

The structure of this section follows the main items depicted in Fig. 1. That is, Sec. 2.1 describes the
components of the application layer and Sec. 2.2 the reference architecture layer of the UAIF. This
is followed by the a description of the components of the software infrastructure layer in Sec. 2.3.
Finally, Sec. 2.4 provides details on the hardware infrastructure components.

2.1 Applications

The application layer contains components on compute- and data-intensive CoE RAISE use cases
(component (A) in Fig. 1), domain-specific CoE RAISE use cases (component (B) in Fig. 1), NCC and
industrial use cases (component (C) in Fig. 1), and DT use cases (component (D) in Fig. 1). These
components are described in detail in the following Sec. 2.1.1, Sec. 2.1.2, Sec. 2.1.3, and Sec. 2.1.4.
In Fig. 1, the large red arrow represent the co-design activities that influence the project reference
architecture components. The large green arrows represent the benefits and adoption potential of
the UAIF for external project activities in the larger HPC ecosystem.

2.1.1 A - Compute- and Data-Intensive CoE RAISE Use Cases

Component (A) in Fig. 1 represents the co-design efforts of the UAIF based on compute- and data-
intensive use cases9. Fact Sheets for each use case have been produced to describe what novel
AI methods correlate to available UAIF components. They foster general understanding of the con-
tributions that have been added over time to the UAIF and include scalability and utility for Exascale
aspects. Several different tasks in WP2 contributed to benchmarking and proof of scalability of se-
lected components of the UAIF on various production and prototype HPC systems in this context, see
also related details in Sec. 3. More information on the Fact Sheets for each CoE RAISE use case are
provided in "Deliverable D2.10 - Monitoring Report" (M18).

8CoE RAISE YouTube Channel https://www.youtube.com/@coeraise6339
9CoE RAISE Use Cases https://www.coe-raise.eu/use-cases

CoE RAISE - 951733 11 28.02.2023

https://www.youtube.com/@coeraise6339
https://www.coe-raise.eu/use-cases

D
2.13

S
oftw

are
layoutplan

for
a

unique
A

Ifram
ew

ork

Figure 1: UAIF software layout plan at project month M26. There have been several changes and additions marked as ‘NEW’ during the last reporting period.
One core component update is the introduction of the UAIF LAMEC API.

C
oE

R
A

IS
E

-951733
12

28.02.2023

D2.13 Software layout plan for a unique AI framework

Detailed co-design activities have been performed via the Interaction Room methodology and Mural
Boards. A list of each board per use case is provided in Appendix B (Mural Board List of CoE RAISE
Use Cases). During the project and especially in the last reporting period, a clear picture is provided
on what components are relevant for the UAIF.

2.1.2 B - Domain-Specific CoE Use Cases [New]

A wide variety of CoEs10 have been funded in different domain-specific areas providing use cases
that leverage simulation sciences or AI/HPC methods to utilize the emerging Exascale computing. At
the time of writing, another EuroHPC JU Work Programme (WOPRO)11 outlining future funding of
CoEs addresses the needs of large user communities in four specific areas of application domains.
As shown in Fig. 1 (B), the UAIF is recommended to CoEs to adopt the UAIF to prevent AI developers
in domain-specific sciences wasting a lot of efforts, cf. Sec. 4.3.

2.1.3 C - NCC and Industrial Use Cases [New]

A pan-European network of NCCs has been created under the EuroCC-1 and EuroCC-2 project
umbrella to enable industry and Small and Medium Enterprises (SMEs) to leverage HPC resources
made available via EuroHPC12. Component (C) of Fig. 1 has been added to represent adoptions
of the UAIF by NCCs and the significant potential to governmental, academic, industry, and SME
partners to speed-up and scale-up their applications towards Exascale. More information about
potentials for NCC adoptions is provided in Sec. 4.2.

2.1.4 D - Digital Twins Use Cases [New]

DTs and corresponding workflows as they are developed, e.g., in the Destination Earth13 or inter-
Twin14 projects, are becoming important for scientific and engineering HPC users in Europe. Compo-
nent (D) has been added to Fig. 1 to represent the processing-intensive applications of DTs that are
also highly relevant for CoE RAISE, either the DTs adopting parts of UAIF components or including
new use cases in CoE RAISE. More information about potentials for DT adoptions is provided in
Sec. 4.4.

2.2 Reference Architecture Elements

This section describes the reference architecture components relevant for the UAIF for Exascale
HPC/AI methods, which are listed in Fig. 1 in the second layer (components (E) – (O)). This covers
descriptions of the Secure Shell (SSH) low-level access (see Sec. 2.2.1 – (E)), Jupyter notebooks
high-level access (see Sec. 2.2.2 – (F)), application workflows (see Sec. 2.2.3 – (G)), LAMEC API
Open Neural Network Exchange (ONNX) standard elements (see Sec. 2.2.4 – (H)), LAMEC API com-
munity platform integration (see Sec. 2.2.5 – (I)), community platform OpenML interoperability (see
Sec. 2.2.6 – (J)), ClearML MLOps platform interoperability (see Sec. 2.2.7 – (K)), LAMEC API facade
pattern implementation (see Sec. 2.2.8 – (L)), LAMEC API batch script repository (see Sec. 2.2.9 –
(M)), LAMEC API batch script generator (see Sec. 2.2.10 – (N)), and open HPC/AI script generator
web page(s)(see Sec. 2.2.11 – (O)).

10EU HPC Centres of Excellence https://www.hpccoe.eu/eu-hpc-centres-of-excellence2/
11EuroHPC JU Work Programme 2023 https://eurohpc-ju.europa.eu/documents_en
12EuroHPC JU HPC Systems https://eurohpc-ju.europa.eu/about/our-supercomputers_en
13Digital Twin Destination Earth https://digital-strategy.ec.europa.eu/en/policies/destination-earth
14InterTwin https://www.intertwin.eu

CoE RAISE - 951733 13 28.02.2023

https://www.hpccoe.eu/eu-hpc-centres-of-excellence2/
https://eurohpc-ju.europa.eu/documents_en
https://eurohpc-ju.europa.eu/about/our-supercomputers_en
https://digital-strategy.ec.europa.eu/en/policies/destination-earth
https://www.intertwin.eu

D2.13 Software layout plan for a unique AI framework

2.2.1 E - Secure Shell (SSH) Low-Level Access

As shown in Fig. 1 (E), the first reference architecture element includes the use of the SSH protocol
into the plan. Principally, as a means to remotely log into HPC systems and submit batch scheduler
scripts, e.g., via the Simple Linux Utility for Resource Management (SLURM) [5] tool, it remains one
of the integral access methods for HPC applications. It hence needs to be provided to researchers.
One example of relevance for CoE RAISE is that AI researchers often use batch scripts for distributed
training of DL models to leverage the high number of Graphical Processing Units (GPUs) that are
available on HPC systems.

2.2.2 F - Jupyter Notebooks High-Level Access

AI researchers frequently require some form of interactive access to HPC systems to facilitate quick
and rapid prototyping of Machine Learning (ML) and DL algorithms and models. Component (F)
in Fig. 1 represents the acknowledgement of this need in the UAIF by offering Jupyter notebooks
and JupyterLabs15. In addition to interactive graphical access via web interfaces, it may extend the
SSH component presented in Sec. 2.2.1 to create SSH sessions out of Jupyter notebooks on HPC
systems, while at the same time being complemented by the Jupyter environment and a wide variety
of useful extensions. CoE RAISE offers access to JupyterLab instances running at JSC through its
service portal16.

2.2.3 G - Application Workflows [New]

The component (G) in Fig. 1 is a new addition to the UAIF and supports application workflows and
workflow automation, including task pre- and post data processing capabilities. The UAIF recom-
mends the Apache Airflow17 tool that is a platform to programmatically author, schedule, and monitor
workflows. The UAIF application workflow set may include more workflow automation tools, such as
Elyra18, in the future. More technical information about application workflows, including application
use cases, is provided in Sec. 3.9.

2.2.4 H - LAMEC API ONNX Standard Elements [New]

As shown in Figure 1 (H), a key component of the overall UAIF LAMEC API is the fast portability
between different DL frameworks and reproducibility achieved by using the standard ONNX format
wherever possible. While one short ONNX report was developed in CoE RAISE and that is available
in the internal document repository of WP2, the implementation of the overall UAIF LAMEC API using
ONNX is still work in progress.

2.2.5 I - LAMEC API Community Platform Integration [New]

Another element of the overall UAIF LAMEC API shown in Fig. 1 is component (I), which represents
a seamless integration with other tools. The goal is to use the LAMEC API to share and re-use
existing AI models of CoE RAISE with community platforms (see also Sec. 2.2.6 and Sec. 2.2.7),
industry tools, datasets, and to enable Transfer Learning (TL). While initial discussions with commu-
nity platforms have taken place, the implementation of the overall UAIF LAMEC API integration and

15Project Jupyter https://jupyter.org/
16CoE RAISE Service Portal https://www.coe-raise.eu/service-portal
17Apache Airflow https://airflow.apache.org/
18Elyra https://github.com/elyra-ai/elyra

CoE RAISE - 951733 14 28.02.2023

https://jupyter.org/
https://www.coe-raise.eu/service-portal
https://airflow.apache.org/
https://github.com/elyra-ai/elyra

D2.13 Software layout plan for a unique AI framework

provisioning of AI models is still work in progress.

2.2.6 J - Community Platform OpenML Interoperability [New]

OpenML19 is an open community platform for sharing datasets, algorithms, models, and experiments
in the realm of AI with a wide variety of traditional ML approaches. One ansatz to enlarge the user
community of CoE RAISE is to integrate UAIF components into the OpenML platform such that ex-
periments can be also run on cutting-edge HPC systems where available. Hence, component (J)
in Fig. 1 represents how this community might leverage the LAMEC API components described in
Sec. 2.2.5. Initial integration has started with OpenML, including one joint training with OpenML that
is available on the CoE RAISE YouTube Channel: RAISE CoE Training: Using OpenML for sharing
datasets, algorithms, and experiments20. At the time of writing, the CoE RAISE team focuses on the
core functionality of the LAMEC API. An integration within OpenML is planned for the second half of
the year 2023.

2.2.7 K - ClearML MLOps Platform Interoperability [New]

ClearML21 is an Machine Learning Operations (MLOps) platform that can be used to develop, orches-
trate, and automate ML workflows at scale. The CoE RAISE consortium provides one installation of
ClearML for its internal and external users, see Sec. 3.2. Another approach to enlarge the user
community of CoE RAISE is to integrate UAIF components into MLOps platforms such as ClearML
that are often used in industry such that its tasks can be also run on cutting-edge HPC systems,
where useful. Hence, the component (K) in Fig. 1 represents how this community might leverage the
LAMEC API components described above in Sec. 2.2.5 through integration with MLOps platforms.
Experience with ClearML exists in CoE RAISE. The project offers the service to users, and a training
on ClearML is available on the CoE RAISE YouTube Channel: RAISE CoE Training: MLOps with
ClearML22. Full integration with ClearML is planned in the second half of the year 2023.

2.2.8 L - LAMEC API Facade Pattern Implementation [New]

To map the abstract specifications of software and hardware needs by AI researchers to specific
software and hardware HPC infrastructure elements, a facade pattern is used by the UAIF LAMEC
API general design. Hence, as represented by component (L) in Fig. 1, the UAIF software layout
design employs an abstract wrapper functionality that maps the abstract specifications from users
to specific software and hardware configurations. The framework element is marked as ‘NEW’. It is,
however, rather a refinement through implementation of the general abstract idea. Apart from the
above mentioned parts of the LAMEC API, the core of this API is split into the two following elements.
The first core element is a batch script repository explained in Sec. 2.2.9 and the second is an
API using this repository to generate new batch script elements, which is described in Sec. 2.2.10.
More technical information about the current implementation status of these two core elements of the
LAMEC API is provided in Sec. 3.6.

19OpenML https://www.openml.org/
20CoE RAISE Training on OpenML available on YouTube https://www.youtube.com/watch?v=xAuXDxGQsxo
21ClearML https://clear.ml/
22CoE RAISE Training on ClearML available on YouTube https://www.youtube.com/watch?v=lowmDcR5qL8

CoE RAISE - 951733 15 28.02.2023

https://www.openml.org/
https://www.youtube.com/watch?v=xAuXDxGQsxo
https://clear.ml/
https://www.youtube.com/watch?v=lowmDcR5qL8

D2.13 Software layout plan for a unique AI framework

2.2.9 M - LAMEC API Batch Script Repository [New]

As described above in Sec. 2.2.8, the first core element of the UAIF LAMEC API is a batch script
repository. It consists of batch scripts for specific HPC systems with a correct setup of modules
needed for using specific UAIF AI tools (see Sec. 2.3.1, Sec. 2.3.2, Sec. 2.3.3, and Sec. 2.3.4). The
framework element is marked as ‘NEW’. It is, however, rather a refinement through implementation
of the general abstract idea already reported in previous Deliverables. Earlier elements of the imple-
mentation of this component are also part of a training on the UAIF that is available on the CoE RAISE
YouTube Channel: RAISE CoE Training: Towards a CoE RAISE Unique AI Software Framework for
Exascale23. As previously described and represented by component (M) in Fig. 1, one idea is to use
this repository with the UAIF LAMEC API (see also Sec. 2.2.10). It quickly becomes clear that the
repository in itself is also a great resource for AI/HPC researchers that already know how to deal with
changing HPC modules in batch scripts. More technical information about the current implementation
status of this first core element of the LAMEC API is provided in Sec. 3.6.

2.2.10 N - LAMEC API Batch Script Generator [New]

As referenced above in Sec. 2.2.8, the second core element of the UAIF LAMEC API, which is rep-
resented by component (N) in Fig. 1, is using the above mentioned repository to generate new batch
script segments. This lowers the barrier for entry to leveraging HPC systems for AI researchers that
may not have much experience working with modules in HPC environments, as well as saving valu-
able time through automation for experienced users. Additional components beyond verified site AI
modules and libraries, such as AI model scripts or datasets for training and inference, are planned for
later addition (although these are usually elements of a job script that inexperienced AI researchers
do not find challenging). While the implementation is work in progress, both core elements of the
UAIF LAMEC API were already demonstrated on selected HPC systems during the "all hands meet-
ing" at the European Organization for Nuclear Research (CERN) in January 2023. More technical
information about the current implementation status of the core elements of the LAMEC API is pro-
vided in Sec. 3.6.

2.2.11 O - Open HPC/AI Script Generator Web Page(s) [New]

The open HPC/AI job script generator web page(s) shown as component (O) in Fig. 1 uses the
implementation of the UAIF LAMEC API. The general concept is derived from existing job script
generators available at the Swiss National Supercomputing Centre (CSCS)24 or the National Energy
Research Scientific Computing Center (NERSC)25, where the difference to these existing tools lies
in the use of UAIF components with a specific focus on AI toolsets. The job script generator might be
hosted at several sites to provide seamless access to AI tools on a variety of HPC systems, not only
one per HPC site.

2.3 Software Infrastructure

The software infrastructure layer components (P) – (S), which are depicted in Fig. 1. are presented
in this section. This layer contains four components, i.e., basic science libraries (P), DL libraries
(Q), distributed DL tools (R), and hyperparameter tuner (S), which are described in the following

23CoE RAISE Training on UAIF available on YouTube https://www.youtube.com/watch?v=cCkfcrXhNdU
24CSCS job script generator https://user.cscs.ch/access/running/jobscript_generator/
25NERSC job script generator https://my.nersc.gov/script_generator.php

CoE RAISE - 951733 16 28.02.2023

https://www.youtube.com/watch?v=cCkfcrXhNdU
https://user.cscs.ch/access/running/jobscript_generator/
https://my.nersc.gov/script_generator.php

D2.13 Software layout plan for a unique AI framework

Sec. 2.3.1, Sec. 2.3.2, Sec. 2.3.3, and Sec. 2.3.4. Again, a green arrow represents adoptions (see
the connection to the hardware layer in Fig. 1, presented in Sec. 2.4).

2.3.1 P - Basic Science Libraries

Despite the massive increase of DL tools and packages, and their uptake in the AI communities,
there remains a core of basic science libraries heavily used by CoE RAISE communities. Examples
of these basic science libraries for AI are NumPy26 and scikit-learn27. This building block (P) in Fig. 1
of the UAIF also includes simulation science codes, e.g., those using numerical methods based on
known physical laws and that have the potential to benefit from coupling to AI models. Since the
CoE RAISE project focuses primarily on AI models, the various relevant simulation science codes
have been kept out of the UAIF software layout plan. Instead, the reader is referred to the Fact
Sheets of the CoE RAISE use case applications that have been described in "D2.10 - Monitoring
Report" (M18). They include simulation science codes where relevant. More technical information
about basic science libraries is provided in Sec. 3.4.

2.3.2 Q - Deep Learning Libraries [New]

The UAIF recommends the use of PyTorch28 and TensorFlow29. CoE RAISE has tested their perfor-
mance and scalability in depth using various applications during the last two years. Although these
two libraries were featured in previous UAIF software layout plans, this component (Q) is marked
as ‘NEW’ in Fig. 1 due to the inclusion of the NVIDIA Data Loading Library (DALI)30 since the last
reporting period. DALI further increases the performance of PyTorch and TensorFlow. This inclusion
is represented by component (Q) in Fig. 1 in parenthesis due to the proprietary nature and support
for NVIDIA GPUs. At the time of writing, CoE RAISE continues to investigate libraries of other GPU
vendors such as from Advanced Micro Devices (AMD). More technical information about the DALI
data loader is provided in Sec. 3.1.

2.3.3 R - Distributed Deep Learning Tools [New]

Component (R) in Fig. 1 outlines three supported libraries used for accelerating distributed AI model
training by leveraging the large number of GPUs available at cutting-edge HPC sites today. Earlier im-
plementations of this component are available as a part of a training on CoE RAISE’s YouTube Chan-
nel: RAISE CoE Training: Distributed Deep Learning31. PyTorch-Distributed Data Parallel (DDP)32

and Horovod33 was already included in earlier UAIF software layout plans. This component is marked
as ‘NEW’ due to the addition of DeepSpeed34. More technical information about the newly added
DeepSpeed tool is provided in Sec. 3.5.

26NumPy https://numpy.org/
27scikit-learn https://scikit-learn.org/stable/
28PyTorch https://pytorch.org/
29TensorFlow https://www.tensorflow.org/
30DALI https://developer.nvidia.com/dali
31CoE RAISE Training on Distributed Deep Learning available on YouTube

https://www.youtube.com/watch?v=q_J5HGCdiW8
32PyTorch Distributed Data Parallel https://pytorch.org/tutorials/beginner/dist_overview.html
33Horovod https://github.com/horovod/horovod
34DeepSpeed https://www.deepspeed.ai/

CoE RAISE - 951733 17 28.02.2023

https://numpy.org/
https://scikit-learn.org/stable/
https://pytorch.org/
https://www.tensorflow.org/
https://developer.nvidia.com/dali
https://www.youtube.com/watch?v=q_J5HGCdiW8
https://pytorch.org/tutorials/beginner/dist_overview.html
https://github.com/horovod/horovod
https://www.deepspeed.ai/

D2.13 Software layout plan for a unique AI framework

2.3.4 S - Hyperparameter Tuner [New]

One of the most successful aspects of the current adoptions of the UAIF are the hyperparameter
tuning or HPO tools represented by component (S) in Fig. 1. Trainings reflecting this component
and its implementation are available on CoE RAISE’s YouTube Channel: RAISE CoE Training: Hy-
perparameter Tuning with Ray Tune35. In addition to the previously included Ray Tune tool36, this
component is marked as ‘NEW’ due to the addition of the Optuna37 and DeepHyper38 tools. More
technical information about the newly added DeepHyper tool is provided in Sec. 3.3.2.

2.4 Hardware Infrastructure

The hardware infrastructure layer components (T) – (Y) depicted in Fig. 1 are presented in this
section. This layer contains components on prototype HPC systems (see Sec. 2.4.1 – (T)), the
D-Wave Quantum Annealing (QA) system (see Sec. 2.4.2 – (U)), the Modular Supercomputing Ar-
chitecture (MSA) Juelich Wizard for European Leadership Science (JUWELS) (see Sec. 2.4.3 – (V)),
container technologies (see Sec. 2.4.4 – (W)), EuroHPC JU hosting sites (see Sec. 2.4.5 – (X)), and
EU HPC systems (see Sec. 2.4.6 – (Y)).

2.4.1 T - Prototype HPC Systems [New]

The benchmarking and porting activities of WP2 have been performed on a number of interesting pro-
totype HPC systems that feature new and emerging technologies. Since the beginning of the project,
the Dynamical Exascale Entry Platform (DEEP)39 system has been used to experiment with the MSA
type of HPC architecture [6, 7]. This component (T) is marked as ‘NEW’ in Fig. 1 to highlight the
activities performed on the two new prototype systems, the Advanced Reduced Instruction Set Com-
puter Machine (ARM)-based CTE-ARM and CTE-AMD, hosted at the Barcelona Supercomputing
Centre (BSC) in Spain. The CTE-ARM is a supercomputer based on 192 A64FX ARM processors,
with a Linux Operating System (OS) and an Tofu interconnect network (6.8GB/s)40. CTE-AMD is a
cluster based on AMD EPYC processors, with a Linux OS and an Infiniband interconnection network.
Its main characteristic is the availability of two AMD MI50 GPUs per node, making it an ideal cluster
for GPU applications41. The reader is referred to "Deliverable D2.7 - Support Report" (M18) for more
details.

2.4.2 U - D-Wave Quantum Annealer System [New]

Quantum Computing (QC) is gaining momentum as the EuroHPC JU recently funded, together with
national contributions, several QC systems42. Multiple CoE RAISE use case applications [8–10]
have successfully engaged in QC by utilizing the D-Wave QA system available via the Juelich UNified

35CoE RAISE Training: Hyperparameter Tuning available on YouTube
https://www.youtube.com/watch?v=Ylt7Htnl1zY

36Ray Tune https://www.ray.io/ray-tune
37Optuna https://optuna.org/
38DeepHyper https://deephyper.readthedocs.io/en/latest/
39DEEP Prototype HPC System hosted by JSC

https://www.fz-juelich.de/en/ias/jsc/systems/prototype-systems/deep_system
40CTE-ARM HPC System

https://www.bsc.es/innovation-and-services/technical-information-cte-arm
41CTE-AMD HPC System

https://www.bsc.es/innovation-and-services/technical-information-cte-amd
42EuroHPC JU Quantum Computers

https://eurohpc-ju.europa.eu/selection-six-sites-host-first-european-quantum-computers-2022-10-04_en

CoE RAISE - 951733 18 28.02.2023

https://www.youtube.com/watch?v=Ylt7Htnl1zY
https://www.ray.io/ray-tune
https://optuna.org/
https://deephyper.readthedocs.io/en/latest/
https://www.fz-juelich.de/en/ias/jsc/systems/prototype-systems/deep_system
https://www.bsc.es/innovation-and-services/technical-information-cte-arm
https://www.bsc.es/innovation-and-services/technical-information-cte-amd
https://eurohpc-ju.europa.eu/selection-six-sites-host-first-european-quantum-computers-2022-10-04_en

D2.13 Software layout plan for a unique AI framework

Infrastructure for Quantum computing (JUNIQ)43 at JSC in Germany. As represented by component
(U) in Fig. 1, the quantum AI models implemented were Support Vector Machines (SVMs). They
were used for regression tasks via Support Vector Regression (SVR). An implementation of this
component is also available as part of a training on SVMs on the CoE RAISE YouTube Channel:
RAISE CoE Training: Quantum Support Vector Machine Algorithms44. More details about these
models can be found in Sec. 3.8 and in "D2.8 - Benchmarking and Support Report" (M24).

2.4.3 V - Modular HPC System JUWELS

The MSA-based HPC system JUWELS is massively used within CoE RAISE for co-designing the
UAIF and performing necessary speed-up and scaling benchmarks of its components, see compo-
nent (V) in Fig. 1. It is an ideal HPC system for AI workloads as described by Kesselheim et al. in [11].
More details on its usage in the project can be obtained from "D2.10 - Monitoring Report" (M18) in
the context of the use case Fact Sheets.

2.4.4 W - Container Technologies

Container technologies are an important tool within larger AI communities to facilitate porting of ap-
plications and datasets between systems. One such example in CoE RAISE is shown as component
(W) in Fig. 1, where the porting operation of a containerized application from JUWELS at JSC to the
MARE NOSTRUM 4 system at BSC is realized. This transparent deployment of containerized code is
made possible by the support of Apptainer45 (previously named Singularity46) available at both sites.
Initial test have been performed with containers on both HPC platforms. More application use case
uptake is foreseen in the last half of the year 2023. This component of the UAIF is crucial to support
more industry applications and to enable easy porting of data science applications that have not used
HPC systems before.

2.4.5 X - EuroHPC JU Hosting Sites [New]

Component (X) in Fig. 1 covers the major EuroHPC JU hosting sites47 that represent stakeholders to
adopt the UAIF. Several European HPC systems that are available within CoE RAISE contributed to
co-design with applications to the UAIF software layout and design. It is the goal of CoE RAISE is to
support as many as possible EuroHPC JU systems during and beyond the lifetime of the project by
building on the sustainability strategy developed in WP5 (Business Development). Initial discussions
with some some of these sites have been started by WP2 partners to encourage the adoption of the
UAIF, and to engage the HPC sites in a CoE RAISE certification process jointly with WP5. At the time
of writing, the broader adoption strategy is in its initial stages, while components such the LAMEC
API are considered to be further developed adding more EuroHPC JU systems support over time.
For additional detail, see Sec. 4.1. One highlight of the planned adoption will be the integration to the
first European Exascale system JUPITER48, which will be installed at JSC in 2024.

43JUNIQ
https://www.fz-juelich.de/en/ias/jsc/systems/quantum-computing/juniq-facility

44CoE RAISE Training on Quantum SVMs available on YouTube https://www.youtube.com/watch?v=WBRfpBRSepg
45Apptainer https://apptainer.org/
46JUWELS Container Runtime

https://apps.fz-juelich.de/jsc/hps/juwels/container-runtime.html
47EuroHPC JU Hosting Sites https://eurohpc-ju.europa.eu/about/our-supercomputers_en
48Path to JUPITER https://www.fz-juelich.de/en/ias/jsc/news/news-items/news-flashes/2023/path-to-jupiter

CoE RAISE - 951733 19 28.02.2023

https://www.fz-juelich.de/en/ias/jsc/systems/quantum-computing/juniq-facility
https://www.youtube.com/watch?v=WBRfpBRSepg
https://apptainer.org/
https://apps.fz-juelich.de/jsc/hps/juwels/container-runtime.html
https://eurohpc-ju.europa.eu/about/our-supercomputers_en
https://www.fz-juelich.de/en/ias/jsc/news/news-items/news-flashes/2023/path-to-jupiter

D2.13 Software layout plan for a unique AI framework

2.4.6 Y - EU HPC Systems [New]

It is important to consider that the whole landscape of European HPC systems is broader than the
EuroHPC JU hosting sites described above. It is observed that new users of the UAIF are often
starting using regional or university-level systems before scaling up to larger systems. Component
(Y) in Fig. 1 contains examples such as the university-level systems Rudens49 of the Riga Technical
University (RTU), or the HPC systems of Rheinisch-Wesfälische Technische Hochschule Aachen -
RWTH Aachen University (RWTH)50. Both of these sites are in the process of adopting parts of
the UAIF framework and are in discussions with CoE RAISE concerning certification steps. Another
example are Belgium regional HPC systems such as the Vlaams Supercomputer Centre (VSC)51

that are in use by CoE RAISE. There is a wide variety of other HPC system providers, such as
commercial and industrial systems in Iceland (e.g., Responsible Compute52) that are not shown in
Fig. 1 (Y), but are in discussions with CoE RAISE to adopt elements of the UAIF.

49Rudens HPC System
https://www.rtu.lv/en/research/science-and-innovation-centre/scientific-equipment-unit/hpc-center

50RWTH Aachen University HPC Systems
https://help.itc.rwth-aachen.de/en/service/rhr4fjjutttf/

51VSC HPC Systems https://www.vscentrum.be/
52Responsible Compute https://responsiblecompute.com/

CoE RAISE - 951733 20 28.02.2023

https://www.rtu.lv/en/research/science-and-innovation-centre/scientific-equipment-unit/hpc-center
https://help.itc.rwth-aachen.de/en/service/rhr4fjjutttf/
https://www.vscentrum.be/
https://responsiblecompute.com/

D2.13 Software layout plan for a unique AI framework

3 Updates of Selected Framework Components

This section details components that have been recently updated or added to the framework. This
also includes major updates of components that have been planned since the beginning of the project.
More specifically, Sec. 3.1 describes DALI from NVIDIA and Sec 3.2 ClearML. This is followed by sec-
tions on HPO, see Sec. 3.3 and on some basic science libraries, see Sec. 3.4. The tool DeepSpeed
is introduced in Sec. 3.5 before the LAMEC API is described in Sec. 3.6. Subsequently, Google JAX
is discussed in Sec. 3.7. Finally, Sec. 3.8 and Sec. 3.9 provide details on quantum SVR and setting
up workflows with Apache Airflow53.

3.1 DALI Data Loader

DALI54 is an open-source framework designed to accelerate the data loading process in DL appli-
cations. Usually, a GPU runs computations much faster than a Central Processing Unit (CPU) can
provide data, resulting in data starvation. GPU starving can be prevented by moving the data-loading
process to the GPU at an early stage. DALI supports multiple data formats and with its unified in-
terface, it is easy to integrate into all common DL frameworks. A large-scale benchmark with the
ImageNet dataset [1] on the JUWELS Booster machine comparing the native PyTorch and the DALI
(CPU and GPU based) data loader across different distributed data-parallel frameworks has been
performed. The results depicted in Fig. 2 show the DALI data loader to achieve high data throughput
DT (in images i per second s) on all node configurations for the CPU and GPU based version. As
shown in Fig. 3, it outperforms the native data loader in terms of data throughput, especially on a
large number of GPUs.

4 8 16 32 64 128 256 512 1024
103

104

105

no. GPUs G

D
T

[i
/s
]

PyTorch-DDP-DALI-CPU
PyTorch-DDP-DALI-GPU
Horovod-DALI-CPU
Horovod-DALI-GPU

Figure 2: Throughput DT of Horovod and PyTorch with the DALI data loader CPU and GPU version on the
compressed ImageNet dataset [1] in images i per second s over the number of GPUs G.

3.2 ClearML

This section describes the usage of ClearML. It is subdivided into Sec. 3.2.1, explaining ClearML and
its purpose, and Sec. 3.2.2, explaining the deployment architecture.

53Apache Airflow https://airflow.apache.org
54DALI https://developer.nvidia.com/dali

CoE RAISE - 951733 21 28.02.2023

https://airflow.apache.org
https://developer.nvidia.com/dali

D2.13 Software layout plan for a unique AI framework

4 8 16 32 64 128 256 512
103

104

105

no. GPUs G

D
T

[i
/s
]

PyTorch-DDP-native
Horovod-native
Deepspeed native
Horovod-DALI-CPU

Figure 3: Throughput DT of Horovod, PyTorch-DDP, and DeepSpeed with the native PyTorch data loader on
raw ImageNet dataset, including comparison with Horovod-DALI-CPU throughput. The largest configuration
only features 512 GPUs in this case as no significant additional speed-up of the native data loader is expected
on larger configurations. The quantity DT is given in images i per second s over the number of GPUs G.

3.2.1 Purpose

MLOps, a name borrowed from Development Operations (DevOps), began as a set of best practices
for developing AI models, and similarly has evolved into a methodology to increase automation and
improve the quality of production models. In contrast to the otherwise ad-hoc approaches in data sci-
ences, it provides methodology in line with DevOps and data engineering to structure development
processes. MLOps tools provide automation of ML/DL pipelines, enable orchestration of all tools
needed for the pipelines, and offer reproducibility of the solution to be used in other use cases, the
latter being especially important for good science.

ClearML is all-round MLOps software that consist of client/server components. AI model training
scripts are instrumented with the client library, which logs training details to a server. Later, source
code version, selected data sets, hyperparameters, runtime parameters, or the resulting learning
curves and performance metrics can be inspected, reviewed, and analyzed, see Fig. 4 for a screen-
shot of the ClearML Graphical User Interface (GUI).

3.2.2 Deployment architecture

In CoE RAISE, ClearML is used in HPC environments. The client is the open source55 Python pack-
age clearml. The server (“ClearML Server”) is available as Software as as Service (SaaS) and as
source-available56 software for self-hosting. To achieve full control over performance and scalability
aspects, the server components are deployed on a private OpenStack cloud at an HPC center, see
Fig. 5. The stack can be considered part of a modular supercomputer service and is well connected
to most European HPC centers via the BelNet57 and GÉANT58 networks.

55The client bears the permissive Apache 2.0 license.
56The license for ClearML Server is the Server Side Public License (SSPL), which is not Open System Interconnec-

tion (OSI) approved open source. SSPL is best known as the license of MongoDB since 2016. Although somewhat
controversial, the terms of SSPL are not peculiarly arduous for CoE RAISE or HPC centers wanting to host it. The main
condition of concern is strict copyleft that extends to maintenance and integration scripts such as backup routines.

57BelNet is the Belgian academic network provider https://belnet.be/en/networks
58GÉANT is the European high-speed research network https://geant.org/

CoE RAISE - 951733 22 28.02.2023

https://belnet.be/en/networks
https://geant.org/

D
2.13

S
oftw

are
layoutplan

for
a

unique
A

Ifram
ew

ork

Figure 4: Comparing experimental results for variants of a Transformer model in the ClearML GUI
.

C
oE

R
A

IS
E

-951733
23

28.02.2023

D2.13 Software layout plan for a unique AI framework

The particular implementation used by CoE RAISE consists of various containers that are hosted in a
Kubernetes cluster, which in turn, runs on the Virtual Machines (VMs) provisioned by the OpenStack
environment of the VSC Tier-1 cloud. Transport Layer Security (TLS) termination is implemented
with a Kubernetes Nginx59-based ingress component instrumented with an Automated Certificate
Management Environment (ACME) tool, see Fig. 5, Kubernetes box. The networking environment of
Kubernetes is configured in Neutron60, the OpenStack networking component.

Figure 5: Architecture of CoE RAISE’s implementation of ClearML on an HPC platform.

The client can run inside an Apptainer (formerly Singularity) container if the HPC center supports
containerization, or on the bare OS of the HPC cluster. On some clusters, it is necessary to con-
figure firewall and Network Address Translation (NAT) traversal rules to use this service, restricted
to Hypertext Transfer Protocol Secure (HTTPS) between specific subdomains (*.hpc.fmops.be in this
example).

3.3 Hyperparameter Tuning

Performance and reliability of neural networks are highly dependent on the selection of hyperparam-
eters. Finding the optimal setting of hyperparameters is a notoriously tough task, and is often per-
formed manually. Hyperparameters are either related to model the architecture, such as the number
of layers or neurons, or related to the optimizer such as the learning rate and batch size. Designing
neural network architectures manually can be time-consuming and prone to human bias. Automated
Neural Architecture Search (NAS) can lead to discovering non-obvious architectures that yield better
results in multiple tasks [12]. Finding the optimal combination of hyperparameters is often impractical
as the the search space is too large to explore exhaustively, and thus is limited by computational
resources. Recent developments in HPO can overcome this limitation by using scalable and efficient
scheduling methods. In the following, two methods for HPO used in CoE RAISE are presented, i.e.,
Ray Tune in Sec. 3.3.1 and DeepHyper in Sec. 3.3.2.

59Nginx https://www.nginx.com
60OpenStack Neutron https://docs.openstack.org/neutron/latest/

CoE RAISE - 951733 24 28.02.2023

https://www.nginx.com
https://docs.openstack.org/neutron/latest/

D2.13 Software layout plan for a unique AI framework

3.3.1 Ray Tune

One of the most common libraries used to perform HPO is the open-source library Ray61. Its sub-
package Ray Tune can run distributed hyperparameter tuning at scale. As HPO involves running a lot
of trials with different sets of hyperparameters, allocating and launching each trial manually can be
costly. With Ray Tune, only a head node needs to be launched and all the worker nodes via a SLURM
script. The head node then connects to the worker nodes and launches the trials. During training,
the worker nodes report their current status, including performance metrics, to the head node, which
can then make informed decisions on terminating low performing trials or launches new ones. The
user specifies the number of resources to use per trial, the hyperparameters and their range, and a
scheduling or optimization algorithm. The head node takes care of communication and scheduling
tasks.

Ray is compatible with all common ML frameworks, including TensorFlow and PyTorch. It also sup-
ports distributed DL libraries like Horovod and PyTorch-DDP. This way, two levels of parallelism can
be used during the HPO process, see Fig. 6. That is, first, the training of the models runs in data-
parallel fashion, e.g., one model is trained across four GPUs on a node using Horovod. Second,
the trials are distributed across different nodes, e.g., on the GPU partition of the Jülich Research
on Exascale Cluster Architectures (JURECA)-DC at JSC, 24 trials run in parallel on 24 nodes using
Ray Tune. These two levels are necessary to accelerate the HPO process, as the models and the
data-sets they are trained on are usually extremely large.

For running HPO at large scale, it is crucial to use efficient algorithms to avoid the waste of compute
resources. The three most commonly used HPO algorithms are:

1. Bayesian Optimization Hyperband (BOHB) [13];

2. Asynchronous Successive Halving Algorithm (ASHA) [14];

3. Population Based Training (PBT) [15].

BOHB and ASHA are both based on the Hyperband algorithm [16], which seeks to approximate the
performance of a hyperparameter configuration by evaluating it on a smaller budget, e.g., by run-
ning a trial with fewer epochs. Worse performing trials are cut early and only the best-performing
trials are kept. This procedure is known as successive halving [17]. In BOHB, the Hyperband al-

Figure 6: Two levels of parallelism in distributed HPO. The single model training runs distributed across workers
with Horovod while different trials run in parallel with Ray Tune. Image taken from the Horovod website.

61Ray https://www.ray.io/

CoE RAISE - 951733 25 28.02.2023

https://www.ray.io/

D2.13 Software layout plan for a unique AI framework

Figure 7: Comparison of the accuracy over the number of epochs (training iteration) for the ASHA algorithm
(top), where under-performing trials are stopped early, to a simple random search algorithm (bottom), where
every sampled configuration is fully trained on cifar-10. In the ASHA case, one training iteration corresponds to
six training iterations in the random search case. 100 trials are evaluated in parallel on the JURECA-DC-GPU
partition.

gorithm chooses the number of hyperparameter configurations and their assigned budget. Bayesian
Optimization (BO) is used to choose the values for the hyperparameters by deploying a tree parzen
estimator [18].

ASHA addresses the problem of large-scale HPO by improving the scalability of the Hyperband
method. To assess the most promising trials, the Hyperband algorithm waits for all trials to reach a
certain threshold in time before applying successive halving. This leads to idling workers as some will
be faster than others. ASHA circumvents this by deciding on a rolling basis which trials are promis-
ing. When two trials reach the time barrier, the trial with the better performance is continued while
the other is paused until the performance of the next completed trial can be juxtaposed. This asyn-
chronous comparison leads to large speed-ups. A comparison of ASHA to a simple random search
method is shown in Fig. 7. The goal is to optimize the number of layers, filters, batch size, learning
rate, and momentum of the training of a small Convolutional Neural Network (CNN) on cifar-1062. It

62cifar-10 https://www.cs.toronto.edu/~kriz/cifar.html

CoE RAISE - 951733 26 28.02.2023

https://www.cs.toronto.edu/~kriz/cifar.html

D2.13 Software layout plan for a unique AI framework

0 200 400 600 800 1000
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Le
ar

ni
ng

 ra
te

Learning rate schedule discovered with PBT on cifar-10

Figure 8: Example of using the PBT algorithm to discover an optimal learning rate schedule over the number
of epochs for a CNN trained on cifar-10.

can be seen that ASHA successfully terminates the trials that do not show good performances and
only runs the top performing ones to the end. In conctrast, random search completely calculates all
sampled trials, even the ones that exhibit poor performance, and therefore does not use the comput-
ing resources efficiently.

Evolutionary methods in HPO such as PBT seek to mimic the process of evolution and natural se-
lection by using Genetic algorithms for finding optimal hyperparameters. At the beginning, an initial
population of different ML models with randomly sampled hyperparameters is initialized and trained
for a few epochs (a generation). Subsequently, the performance is measured and the models are
ranked according to their results. In the next step, different genetic operations such as mutations are
applied. In the case of mutation, the worst performing trials copy the state and hyperparameters of
the best performing models and apply small perturbations to these parameters. This way, only the
best-performing models continue training. The worst-performing ones are early-stopped and their
resources are reassigned to the perturbed configurations. As multiple models are trained in parallel
and the performance evaluation only takes place at certain points in time, the framework is highly
scalable. Due to the iterative nature of the optimization process, the framework is suitable for dis-
covering unsteady series of hyperparameters, e.g., learning rate schedules. An example is shown in
Fig. 8, where PBT is used to find an optimal learning rate schedule for training a CNN on cifar-10.

In CoE RAISE, Ray Tune and its HPO algorithms have been successfully used across different use
cases to improve the performance of ML models:

• In the use case of Task 3.1 (AI for turbulent boundary layers), the hyperparameters of a
Convolutional Autoencoder (CAE) have been analyzed and ranked according to their signifi-
cance. As the learning rate was found to be the most important parameters, several approaches
for optimizing it were explored.

• In the use case of Task 4.1 (Event reconstruction and classification at the CERN HL-LHC),
a Graph Neural Network (GNN) for particle reconstruction in a High-Energy Physics (HEP)
domain was improved by the use of the ASHA and BOHB algorithms.

CoE RAISE - 951733 27 28.02.2023

D2.13 Software layout plan for a unique AI framework

• In the use case of Task 4.2 (Seismic imaging with remote sensing for energy applications), the
ASHA algorithm was deployed to optimize the hyperparameters of a Transformer (TF)-based
ML model for the prediction of Land Cover (LC) change, based on time-series satellite image
data. The model was able to achieve a validation accuracy of 96% and, as depicted in Fig. 9, the
speed-up is close to linear, even when scaled to a large numbers of GPUs. Therefore, ASHA
has been verified as a suitable choice for this use case running HPO on supercomputers.

Beyond internal use cases, the Ray Tune component of the UAIF has been adopted by use cases
outside of CoE RAISE, e.g. in the medical field [19].

4 8 16 32 64

1

2

4

8

16

#GPUs

sp
ee

d-
up

ideal
ASHA

Figure 9: Scalability of ASHA, optimizing the hyperparameters of the TF model from Task 4.2 of CoE RAISE.
Each trial runs on one node (four GPUs of the GPU partition of JURECA-DC and the time to evaluate 50 trials
is measured.

3.3.2 DeepHyper

DeepHyper63 is another distributed ML package for automated development of deep neural networks.
It adopts an asynchronous BO approach for HPO and NAS at HPC scale. The BO algorithm aims
to fit a dynamically updated cheap-to-evaluate surrogate model to identify promising regions in the
search space. High-performing hyperparameters configurations are eventually found by exploita-
tion and exploration of the search space. In addition, DeepHyper’s automated deep ensemble for
Uncertainty Quantification (UQ) evaluates the model reliability by automatically generating a catalog
of neural network models through joint neural architecture and hyperparameter search, and selecting
a set of high-performing models to construct the ensembles, and estimating aleatoric and epistemic
uncertainties from the generated ensembles.

DeepHyper is comprised of three modules:

• deephyper.problem: tools for defining hyperparameter search problems;

• deephyper.evaluator : interface to dispatch model evaluation tasks;

• deephyper.search: search methods.

63DeepHyper: https://deephyper.github.io

CoE RAISE - 951733 28 28.02.2023

https://deephyper.github.io

D2.13 Software layout plan for a unique AI framework

The basic workflow for DeepHyper is to first define a black-box function f(x) to be optimized, which
represents the performance of the network. Then, the search space as input variables to the black-
box function can be defined through the deephyper.problem module. An evaluator object
wraps the black-box function, distributes the computation, and adapts to different back-ends, e.g.,
to the Message Passing Interface (MPI) or Ray. The final step is to define the search algorithm.
Centralized Bayesian Optimization (CBO) search in DeepHyper is currently used in CoE RAISE,
which has the advantage of being asynchronous to keep a good utilization of the resources when the
number of available workers increases as a trial has finished and the worker become idle.

DeepHyper is being applied to a new use case in medical imaging64. Best-practice for using Deep-
Hyper will be compiled and shared in upcoming publications, highlighting performance, scalability,
and accuracy, as well as comparing DeepHyper to similar tools such as Ray Tune.

3.4 Basic Science Libraries: NumPy and scikit-learn

This section covers some of the common Python libraries used in CoE RAISE for ML and data anal-
ysis tasks. For brevity, only the NumPy65 and scikit-learn66 packages are decribed in the following
Sec. 3.4.1 and Sec. 3.4.2.

3.4.1 NumPy

NumPy is a general-purpose open source Python package for scientific computing primarily support-
ing multi-dimensional arrays and matrices and including high-level mathematical functions to operate
on these arrays. NumPy as a fundamental package is a dependency for many higher-level Python
packages used in CoE RAISE including scikit-learn, PyTorch, TensorFlow. It is used in many project
use cases, for example, using its powerful library support working with arrays (see below).

The main data type of NumPy is ndarray representing a multi-dimensional array object and provid-
ing fast array-oriented arithmetic operations, as well as flexible broadcasting capabilities. The NumPy
arrays have the following benefits:

• efficient storage and data operations;

• ability to perform complex computations on large blocks of data.

NumPy provides various methods for working with arrays:

• indexing and slicing;

• sorting and reshaping;

• combining and splitting;

• adding and removing elements;

• descriptive statistics.

3.4.2 scikit-learn

scikit-learn represents a set of simple and efficient tools for predictive data analysis and ML. scikit-
learn contains algorithms and models for classification, regression and clustering, as well as for
supervised and unsupervised learning. The package is extensively used, for example, in WP3 Task

64HPO use case with DeepHyper: https://jlesc.github.io/projects/hyperp_sr_project/
65NumPy https://numpy.org
66scikit-learn https://scikit-learn.org

CoE RAISE - 951733 29 28.02.2023

https://jlesc.github.io/projects/hyperp_sr_project/
https://numpy.org
https://scikit-learn.org

D2.13 Software layout plan for a unique AI framework

3.2 on BSC and RTU HPC clusters for wind turbine simulation and ML model data preprocessing, as
well as for the accuracy estimation of the results.

The main functional components of scikit-learn are the following:

• Supervised learning algorithms - popular supervised learning algorithms, for example, linear
regression, SVM, decision trees.

• Unsupervised learning algorithms - popular unsupervised learning algorithms, for example,
clustering, factor analysis, Principal Component Analysis (PCA).

• Clustering – grouping unlabeled data such as KMeans.

• Cross validation – methods for estimating the performance of supervised models on unseen
data.

• Dimensionality Reduction – methods for reducing the number of attributes in data for summa-
rization, visualization, and feature selection.

• Ensemble methods - for combining the predictions of multiple supervised models.

• Feature extraction - methods for defining attributes in image and text data.

• Feature selection - methods for identifying meaningful attributes from which to create super-
vised models.

3.5 DeepSpeed

Data-distributed training is a simple but powerful approach to accelerate ML training, where the in-
put dataset is distributed to separate GPUs, and the trainable parameters between the GPUs are
exchanged occasionally. DeepSpeed [20], developed by Microsoft, is one of many open-source
frameworks that includes such data-distributed training algorithms. It targets resource-effectiveness
and memory-efficiency. This framework is designed to train large distributed models with better par-
allelism on existing computer hardware. DeepSpeed is optimized for low-latency and high-throughput
training. It includes the Zero Redundancy Optimizer (ZeRO)67 for training large models with 100 bil-
lion or more parameters, which is especially useful for CNNs and Natural Language Processing (NLP)
applications. DeepSpeed extends the capabilities of PyTorch by taking care of the distribution of the
dataset to different workers, e.g., CPUs, GPUs, or Intelligent Processing Units (IPUs), and the update
of network parameters (gradients and weights) between these workers.

DeepSpeed was tested on various heterogeneous HPC systems available to CoE RAISE. Initially,
this framework was ported to two prototype systems, i.e., to the DEEP and CTE-AMD systems at
Forschungszentrum Jülich GmbH (FZJ) and BSC. With these systems, the performance of Deep-
Speed was tested for various hard- and middlewares, including NVIDIA/AMD GPUs running Compute
Unified Device Architecture (CUDA)68/Radeon Open Compute platforM (ROCm)69 frameworks. These
findings have been made available in Deliverables D2.6 and D2.7. With the knowledge gathered from
these prototype systems, DeepSpeed was then deployed on JURECA, with no additional complica-
tions. Full details of porting and testing activities can be found in Deliverable D2.2.

Performance results of DeepSpeed are depicted in Fig. 10. Briefly, the first analysis of DeepSpeed
has shown that the data distribution and network update of the DeepSpeed framework greatly re-
semble those of the original PyTorch-DDP. The lack of improvement from DeepSpeed likely stems

67ZeRO https://www.deepspeed.ai/tutorials/zero/
68CUDA https://developer.nvidia.com/cuda-toolkit
69ROCm https://www.amd.com/en/graphics/servers-solutions-rocm

CoE RAISE - 951733 30 28.02.2023

https://www.deepspeed.ai/tutorials/zero/
https://developer.nvidia.com/cuda-toolkit
https://www.amd.com/en/graphics/servers-solutions-rocm

D2.13 Software layout plan for a unique AI framework

4 8 16 32 64
0

100

200

300

400

#GPU

t̄ e
[s

]

(a)

DeepSpeed
PyTorch-DDP

4 8 16 32 64

1
2

4

8

16

#GPU
s

(b)

Ideal

4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

#GPU

e

(c)

Figure 10: Performance of distributed training with DeepSpeed vs. PyTorch-DDP API on JURECA. Depicted
are average epoch time t̄e (a), speed-up s (b), and efficiency e (c). The black dashed line represents the ideal
scenario (perfect scaling).

from the shared data and parameter distribution algorithms of PyTorch-DDP. It could be that Deep-
Speed is developed to train exceptionally large ML models, which require model-distributed paral-
lelism, i.e., it necessitates to distribute parts of the model to different GPUs and communicate the
gradients/weights between all GPUs. Therefore, the developers of DeepSpeed might have focused
solely on model-distributed parallelism and used the standard implementation for data-distributed
parallelism from PyTorch-DDP. This likely assumption comes from the fact that DeepSpeed has only
been used for model-distributed parallelism in the literature, see, e.g., the work by Rasley et al. [20].
Thus, any improvement to the standard PyTorch-DDP algorithms should not be expected.

These findings suggest to rely solely on DeepSpeed if model-distributed parallelism is required, not-
ing that such a use case with a large ML model is at present not part of CoE RAISE. That is, the lack
of speed-up indicates that PyTorch-DDP is already sufficient for the use cases in CoE RAISE that
already benefit from PyTorch-DDP’s data-distributed parallelism. Nevertheless, it was important to
understand the performance and applicability of DeepSpeed to ML training and to make the software
available to others with potentially more suited applications on JSC’s and BSC’s machines.

3.6 LAMEC API

Dependency management on HPC systems can be a source of frustration for many users. Soft-
ware updates can cause unexpected and cryptic errors, sometimes taking hours or even days to
fix. Therefore, having an automated way to deal with dependency issues could save a significant
amount of working hours on a yearly basis. HPC systems rely heavily on module environments to
load software packages and libraries for users. It is with these module commands, found practically
in all HPC jobscripts, that dependencies tend to break: an unannounced or silent update is made to
the module environment that breaks compatibility and results in errors. Having a tool that generates
these module commands automatically, based on the software libraries that users need, could be a
first step in combating this problem.

Load AI Modules, Environments, and Containers (LAMEC) is a Python API and command-line tool
that generates SLURM scripts to start jobs on HPC systems, leveraging the SLURM workload man-
ager. Two basic components have been implemented in LAMEC: dependency resolution and re-
source allocation. First, based on the software and system being used, commands are generated
to load modules with the correct dependencies. This is done by extracting information from a Gitlab

CoE RAISE - 951733 31 28.02.2023

D2.13 Software layout plan for a unique AI framework

repository70 developed as a part of the UAIF, which contains example start scripts for using main-
stream ML frameworks on multiple HPC systems. The Gitlab repository is constantly maintained so
it can provide up-to-date dependency information for the LAMEC API. Second, SLURM commands
are generated to start jobs with the required allocation. Currently, the LAMEC API batch script gen-
erator has support for JUWELS, JURECA, and the DEEP system at FZJ, and the following software
frameworks and libraries:

• DeepSpeed (DEEP, JURECA)

• PyTorch-DDP (All)

• Helmholtz Analytics Toolkit (HeAT)71 (DEEP, JURECA)

• Horovod (DEEP, JURECA)

• Ray Tune (JURECA)

• TensorFlow (DEEP).

The above mentioned ML frameworks are widely available on HPC systems and have all been bench-
marked and evaluated in CoE RAISE. The reader can refer to previous sections for application of
PyTorch-DDP, TensorFlow, Horovod, Ray Tune 3.3 and DeepSpeed 3.5 in CoE RAISE. HeAT is
mainly in developed in the Helmholz Association and is suited for distributed and high-performance
data analytics.

The command-line tool is simple and has two subcommands: lamec gen and lamec eval. The
gen sub-command allows users to generate module commands and prints to standard output.

$ lamec gen deep ddp

MODULES BEGIN deep ddp heat

ml -force purge

ml use $OTHERSTAGES

ml Stages/2022 GCC/11.2.0 OpenMPI/4.1.2

cuDNN/8.3.1.22-CUDA-11.5 NCCL/2.11.4-CUDA-11.5

Python/3.9.6

MODULES END

A module block begins with #MODULES BEGIN, followed by the HPC system and a space-separated
list of software libraries exposed through modules, and ends with #MODULES END. These module
blocks serve a purpose when used with the eval sub-command, as it evaluates the listed HPC sys-
tem and software libraries, and if there has been a change to the module environment, the block will
be updated. In addition, eval allows adding and removing software, as well as updating the module
block to be used on a different HPC system, e.g., transitioning from DEEP to JURECA. By default,
changes are printed to standard output but can also be written to a file.

The method for the LAMEC API to generate module commands with the correct dependencies re-
quires that the Gitlab repository be synchronized with the software packages installed on HPC sys-
tems. Currently, this requires manual intervention from a maintainer, however, communication sys-
tems are under development for automated reporting of module changes and bug reports from users.

70AI for HPC repository https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai-for-hpc
71HeAT http://www.helmholtz-analytics.de/helmholtz_analytics/EN/GenericMethods/HeAT/_node.html

CoE RAISE - 951733 32 28.02.2023

https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/ai-for-hpc
http://www.helmholtz-analytics.de/helmholtz_analytics/EN/GenericMethods/HeAT/_node.html

D2.13 Software layout plan for a unique AI framework

The second component in the LAMEC API is resource allocation. SLURM manages clusters by al-
locating access to computing nodes for users with a certain duration of time. It provides tooling for
users to allocate, submit, and monitor jobs, as well as monitor queuing of pending jobs. The user can
take the output from the LAMEC API and manage jobs in batch systems using SLURM commands:

• sbatch – submit a job script;

• squeue – check status of jobs;

• scancel – delete job from the. queue

The following is an example of a SLURM script generated by LAMEC for using DDP on JURECA’s
GPU partition:

#SBATCH -job-name=testjob

#SBATCH -account=raise-ctp2

#SBATCH -output=test.out

#SBATCH -error=test.err

#SBATCH -time=01:00:00

#SBATCH -partition=dc-gpu

#SBATCH -nodes=2

#SBATCH -gpus-per-node=4

#SBATCH -ntasks-per-node=1

#SBATCH -cpus-per-task=32

srun ./executable.x

Among the above SLURM parameters, the gpus-per-node, ntasks-per-node and cpus-per-

task are not straightforward to determine, and are dependent on the system and software utilized.
Given a system and partition, LAMEC sets reasonable default values as suggestions for users.
For example, the default value of gpus-per-node is set depending on hardware settings: 4 for
JURECA’s GPU partition and JUWELS booster, 1 for the DEEP system. ntasks-per-node is de-
pendent on software requested. It is equal to gpus-per-node for Horovod and HeAT, but set to 1

when using DDP, Ray Tune, and DeepSpeed. On JURECA’s GPU partition, cpus-per-task is set
to 32 because there are 2*64 core CPUs and 4 GPUs per node. Therefore, cpus-per-task is best
set to the total number of CPU cores divided by gpus-per-node. Currently, LAMEC is being devel-
oped on FZJ’s HPC systems and soon will be extended to systems on other partner sites, including
CTE-AMD at BSC and PizDaint at CSCS.

The LAMEC API is currently available as a command-line tool, a web form interface is being devel-
oped and shall be made available through the service portal on CoE RAISE’s website72 and FZJ’s
APPS server for better visibility. The APPS server at FZJ is a content management system to host
web applications for science or administration. The reader can refer to an existing tool hosted on
APPS server as example73. In the web form interface currently under development, users can select
the HPC system and software they want to use from a drop-down list and modify input job configura-
tion data such as the account name, wall time, or the executable. By clicking a button, a start script
will be generated in a text area, which can simply be copied.

72CoE RAISE Service Portal https://www.coe-raise.eu/services
73Pinning tool on APPS server https://apps.fz-juelich.de/jsc/llview/pinning/

CoE RAISE - 951733 33 28.02.2023

https://www.coe-raise.eu/services
https://apps.fz-juelich.de/jsc/llview/pinning/

D2.13 Software layout plan for a unique AI framework

3.7 Google JAX

Google JAX74 is an ML framework for transforming numerical functions. It brings together a modi-
fied version of Autograd75 (automated obtaining of the gradient function through differentiation) and
TensorFlow’s Accelerated Linear Algebra (XLA)76. It is designed to follow the structure and workflow
of NumPy, see Sec. 3.4, as closely as possible and works with various existing frameworks such as
TensorFlow and PyTorch. The primary functions of JAX are:

• grad: automatic differentiation;

• jit: just-in-time compilation;

• vmap: auto-vectorization;

• pmap: Single-Program Multiple-Data (SPMD) programming.

JAX provides two different APIs for ML and simulation:

• jax.numpy: lightweigth numpy-like API, build to parallelize numpy operations by simply replac-
ing the import;

• jax.lax: stricter API, for tailored operations.

JAX is built on the XLA library, which works by producing an Intermediate Representation (IR) code
of a computational graph. Then, XLA’s compiler applies optimizations on this IR code to build kernels
tailored for the specific hardware architecture. More specifically, it fuses kernels whenever possible in
order to avoid data copies and buffering by fusing multiple operations inside the same vectorization
loops. Figure 11 shows a kernel fusion example including a code block, where the image was taken
from slides of the 2019 European LLVM Developers Meeting77.

Figure 11: Example of kernel fusion: fusing multiple operations inside the same vectorization loop.
.

74Google JAX https://github.com/google/jax
75Autograd https://github.com/hips/autograd
76XLA https://www.tensorflow.org/xla
77Slides 2019 European LLVM Developers Meeting https://llvm.org/devmtg/2019-04/slides/TechTalk-Joerg-Automated_

GPU_Kernel_Fusion_with_XLA.pdf

CoE RAISE - 951733 34 28.02.2023

https://github.com/google/jax
https://github.com/hips/autograd
https://www.tensorflow.org/xla
https://llvm.org/devmtg/2019-04/slides/TechTalk-Joerg-Automated_GPU_Kernel_Fusion_with_XLA.pdf
https://llvm.org/devmtg/2019-04/slides/TechTalk-Joerg-Automated_GPU_Kernel_Fusion_with_XLA.pdf

D2.13 Software layout plan for a unique AI framework

Algorithm 1 Snippet of code comparing JAX to numpy.

from jax import jit
import jax.numpy as jnp

def selu_np(x, alpha=1.67, lambda=1.05):
return lambda np.where(x > 0, x, alpha * np.exp(x)-alpha)

def selu_jax(x, alpha=1.67, lambda=1.05):
return lambda jnp.where(x > 0, x, alpha * jnp.exp(x)-alpha)

NumPy vs. JAX Compute time [ms] Speed-up

NumPy on CPU 7.6 -

JAX on CPU 4.8 1.58

JAX on GPU w/o Just-In-Time Compilation (JIT) 1.21 6.28

JAX on GPU w/ Just-In-Time Compilation (JIT) 0.13 58.46

Table 1: JAX speed-up compared to NumPy.

JAX requires functionally-pure procedures to be compiled into low-level kernels. That is, JAX can
compile procedures that are:

• stateless;

• without Input/Output (IO), random generators...

In the case of NumPy codes, this imposes a few constraints:

• tensors should be immutables and modified by setters, e.g., by using y.at[0].set(1);

• slicing assignments are forbidden, e.g., a[a < 0] =

JAX unifies different hardware since it runs seamlessly across CPUs, GPUs, and Tensor Processing
Units (TPUs). It can scale easily over hundreds of cores. As part of CoE RAISE’s Task 3.3 (AI for
data-driven models in reacting flows) and Task 3.4 (Smart models for next-generation aircraft engine
design), BULL investigated JAX as a framework working both for Computational Fluid Dynamics
(CFD) simulations and ML. Most DL frameworks are based on Python, while CFD solvers are usually
based on Fortran or C/C++. This creates compatibility issues when trying to couple both. JAX helps
to alleviate this issue by having a NumPy-like framework to solve partial equations and ML derivatives
like shown in Alg. 1. Table 1 shows the speed-up that one can have when implementing JAX, also
with and without Just-In-Time Compilation (JIT).

At the time of writing this Deliverable, this component is not included in the UAIF, but investigation
continues and potential addition of this component will be evaluated in the next software layout plan
iteration.

3.8 Quantum Support Vector Regression

Quantum machines are novel hardware devices that exploit the quantum mechanical properties of
matter to perform computations in a faster and more energy-efficient way. For the UAIF, it is planned

CoE RAISE - 951733 35 28.02.2023

D2.13 Software layout plan for a unique AI framework

Figure 12: Comparison of regression methods for predicting the learning curves of neural networks trained on
cifar-10.

to provide methods that researchers can directly use to run their problems on a D-Wave QA. In terms
of algorithms, the focus has been on the Quantum Support Vector Regression (Q-SVR) method. This
method takes as input a set of samples formed by a pair of one or more independent variables and
one dependent variable. The objective of the training phase is to learn the relationship between the
independent and dependent variables. The training phase amounts to an optimization problem in
which the objective is the determination of the coefficients that define the estimated regression func-
tion.

The original formulation to run Q-SVR on a QA was proposed in [9]. Specifically, the QA was used
for the optimization problem related to the training phase of the SVR. To be solved by the QA, the
problem must be reformulated as a Quadratic Unconstrained Optimization Problem (QUBO), in which
each variable can take its value from a binary set and the terms of the equation are either linear or
quadratic. The reformulation of the original optimization problem to a QUBO problem is carried out
by applying an encoding procedure to the original problem variables that are intrinsically continuous,
to turn them into discrete variables. The set of possible values that the encoded variables can take
depends on the encoding hyperparameters that are selected by the user. The QA returns as output
a set of solutions whose number is selected by the user. To obtain the final solution, the individual
solutions are combined. A first benchmark of the performance of Q-SVR in comparison to classical
SVR (C-SVR) and linear regression (OLS) is depicted in Fig. 12. The task of the benchmark was to
extrapolate the learning curves of different neural networks trained on cifar-10.

The results show that the Q-SVR algorithm does achieve R2 scores above 70%, but is still outper-
formed by classical SVR by roughly 10%. Therefore, more research into the stability of the predictions
of the QA is required. The code used for performing the calculations will be available open-source
soon.

CoE RAISE - 951733 36 28.02.2023

D2.13 Software layout plan for a unique AI framework

3.9 Workflow with Apache Airflow

The workflow used in CoE RAISE is based on a modified version of the classification system pro-
posed by Paris et al. [21]. It is based on a scalable and parallelizable, tile-based approach [22]
designed for the fast and efficient production of LC maps at the large scale. It can automatically
update the LC maps using available Remote Sensing (RS) images and ML and DL models based on
parallel and scalable algorithms. In this version of the workflow, a DL TF model is considered as a
classifier [23]. The entire workflow can be run on an HPC system, enabling the rapid generation of
LC maps at a large scale, such as country, continental, or at a global level.

RS data can be complex to process due to its large volume, diverse sources and formats, and scale of
physical area with asynchronous or unreliable reporting. Challenges include data storage and man-
agement, data integration and harmonization, and processing data for different applications. These
factors can make processing RS data more complex, particularly for large-scale applications. To ad-
dress these needs it is necessary to develop processing workflows using parallel algorithms that can
scale on heterogeneous and HPC technologies, including HPC platforms, clusters and clouds, and
hardware accelerators such as GPUs.

Workflows are a way of organizing and automating a series of computational and data manipulation
steps. They can be represented visually as a series of building blocks, and their formalization allows
for enhanced reuse and portability of processes. Workflow managers are tools that help to design
and execute workflows, and they can optimize processing through conditional rules such as schedul-
ing and parallelization. However, designing and implementing workflows often requires specialized
training and expertise. Currently, there are challenges in building scalable workflows due to increas-
ing data volumes and demands, and the need for portability and distributed workflows.

Apache Airflow78 is a workflow manager to programmatically author, schedule, and monitor work-
flows. It uses a message queue to orchestrate the workers and has a modular architecture, which fa-
cilitates scalability and extensibility. Moreover, tasks and dependencies may be defined using Python.
This allows users to maintain full flexibility in a familiar language when building workflows. Figure 13
shows an example on how to integrate Apache Airflow into HPC systems.

Figure 13: How Apache Airflow can be integrated into HPC system.

78Apache Airflow https://airflow.apache.org

CoE RAISE - 951733 37 28.02.2023

https://airflow.apache.org

D2.13 Software layout plan for a unique AI framework

Algorithm 2 shows how Apache Airflow manages the individual scripts. After the tasks are defined,
an SSH connection to HPC is built up and a batch script can be executed. By using Airflow, the
management and execution efficiency of the workflow can be enhanced.

Algorithm 2 Example of how Apache Airflow-based workflows are created.

This bash script is executed on the HPC system. It accesses the folder, where
the script is found and then executes it. It exits once the job fails.

task_ssh_bash """
pwd
cd /p/project/deepacf/deeprain/kreshpa1/test &&
JID=$(sbatch run_script.sh)
echo $JID
sleep 10s
ST="PENDING"

while ["$ST" != "COMPLETED"]; do
ST=$(sacct -j ${JID##* } -o State | awk ’FNR == 3 {print $1}’)
sleep 1m

if ["$ST" == "FAILED" J; then
exit 122

fi

echo $ST
done
"""

Instantiating a DAG by passing to it a dag_id which serves as unique
identifier.

dag = DAG(dag_id=’test1’
default_args=default_args,
dagrun_timeout=timedelta(seconds=120))

Test case: Instantiating an SSHOperator which creates the SSH connection to an
HPC system. After that, it executes a simple command.

1s = SSHOperator(
task id=’1s’,
command=’ls -1’,
ssh_hook=sshHook,
dag=dag)

Instantiating an SSHOperator, which sets up an SSH connection to an HPC system
and then executes a batch script located on that system.

test = SSHOperator(
task_id=’test’,
command=task_ssh_bash,
ssh_hook=sshHook,

CoE RAISE - 951733 38 28.02.2023

D2.13 Software layout plan for a unique AI framework

4 Adoption Plans of the Framework

This section outlines the plans for the adoption of the UAIF for different stakeholders during the
remainder of the project and beyond based on the sustainability strategy that is being discussed
in WP5. That is, it is the goal of this section to focus on the technical realization on the possible
adoption while respecting commercialization plans regarding sustainability of the project, business
plans, and certification as provided in complementary WP5 Deliverables that follow the same project
impact vision. The adoption plan will provide guidance for the remaining time of the project to proceed
with the adoption jointly performed with the different listed EU activities and the contacts established
through them, e.g., SMEs, industry or government, academic or industrial HPC centers, etc.

Figure 14 summarizes the adoption plan within the larger context of the project impact plans. Each
subsection will address the relevant parts of this figure and will connect it with other ongoing EU
activities that can enable an amplification factor of impact for the CoE RAISE project. In more detail,
Sec. 4.1 and Sec. 4.2 present the adoption plans for EuroHPC JU hosting sites and for the NCCs
of EuroCC-2. Sunsequently, Sec. 4.3 and Sec. 4.4 discuss them for other CoEs and DT endeavors.
Finally, Sec. 4.5 provides a plan for the wider AI community.

At the time of writing, many members of the CoE RAISE project are already engaged in various steps
of this plan. It should be noted that not all of the listed EU activities in Fig. 14 have been contacted,
nor collaborations with all of them have been established.

4.1 Adoption Plans for EuroHPC JU Hosting Sites

The general plan for the adoption of the UAIF by EuroHPC JU hosting sites was briefly described
above in Sec. 2.4.5. The formula for beginning adopting requires assembling the relevant experts
from both the hosting site and CoE RAISE. Along with experts from WP2 and WP5, administrators,
technical, and software experts of the hosting site should be included in the collaboration meetings.
After an initial presentation of the UAIF goals and potential benefits of the adoption to users and host-
ing site, the adoption steps are as follows. The first step is a survey and analysis of what software is
already available on a specific hosting site compared the components of the UAIF. The second step
is having discussions about adding or modifying the hosting site software availability over time, e.g.,
in Fig. 15 roughly three month are estimated – potentially even more for Exascale hosting sites, with
selected UAIF components, where useful. In the third step, testing and certification runs of applica-
tions are performed to demonstrate the benefits gained from the UAIF components, where adopted.
This also includes discussions on certification with hosting sites to understand what a CoE RAISE
certification entails. The final step is to collect tailored job scripts customized to the hosting site and
integrating them into the LAMEC API described in Sec. 3.6.

Figure 15 shows the projected adoption timeline for EuroHPC JU hosting sites for selected UAIF
components. The timeline serves as an estimate and is subject to availability from the corresponding
hosting site. At the time of writing, several hosting sites have been contacted and are pending discus-
sions with systems administrators and application specialists. As shown in Fig. 14, in some cases,
NCCs have close relations to hosting sites or are the hosting site partner directly. In these cases, a
closer collaboration and faster adoption of the UAIF at the hosting sites is foreseen. Alongside WP2
experts, there will be also WP5 experts participating in the collaboration to understand the potential
of certification for a hosting site. While WP2 provide technical discussion inputs, the WP5 experts
provide insights on the certification process of the project.

CoE RAISE - 951733 39 28.02.2023

D
2.13

S
oftw

are
layoutplan

for
a

unique
A

Ifram
ew

ork

Figure 14: Adoption plans for the UAIF for potential European stakeholders with links to the overall project impact plans. The plan is aligned with plans of
other relevant EU activities like the EuroHPC JU, the EuroCC-2 project, other CoEs, and DTs.

C
oE

R
A

IS
E

-951733
40

28.02.2023

D
2.13

S
oftw

are
layoutplan

for
a

unique
A

Ifram
ew

ork

Figure 15: Adoption plans for the UAIF for potential European stakeholders with a particular focus on the EuroHPC JU hosting sites. The project aims to
work with two new hosting sites every two month. Based on the sustainability strategy of WP5 and realization timeline of JUPITER, the most efforts towards
adopting the UAIF on a European Exascale machine would be only in 2024. The blue timeframe reflects the runtime of the CoE RAISE project while the grey
timeframe depends on the sustainability of the project and work performed in WP5.

C
oE

R
A

IS
E

-951733
41

28.02.2023

D2.13 Software layout plan for a unique AI framework

The timeline shown in Fig. 15 is quite ambitious. However, several of the UAIF components are
already available at many of the targeted sites. It is expected that this will accelerate the adoption of
the UAIF in many cases, while preserving autonomy as not all components of the UAIF need to be
adopted, i.e., it depends on the interest of the specific hosting site. CoE RAISE offers a significant
speed-up through scaling and more efficient AI models for users through HPO. The incentive is
quite high from all parties to save significant time for users in creating job scripts by cooperating
with CoE RAISE by means of the LAMEC API described in Sec. 3.6. Hence, a primary goal of the
collaboration with hosting sites entails the integration of tailored job scripts specific to the hosting site
systems into the LAMEC API and the job script generator capabilities.

Finally, CoE RAISE does not compel or aim to influence hosting sites that have no time or resources
to cooperate. This section has outlined a general plan of adoption. It should be noted that the plan
does no guarantees that hosting sites will engage as projected in Fig. 15. This timeline remains
subject to further discussion and evolution in the remainder of the project.

4.2 EuroCC-2 National Competence Centers (NCCs)

The general idea of adoption by NCCs of the UAIF has already been sketched in Sec. 2.1.3. As
shown in Fig. 14 and Fig. 16, the roles of NCCs in the context of the adoption are twofold. Several
NCCs are close to EuroHPC JU hosting sites or are both the same organization thus also being a link
to the adoption of the UAIF on HPC systems. Secondly, NCCs have the goal to enable industrial use
cases and are thus also good contacts to understand what role HPC plays in industry and where the
UAIF components may help. Several NCCs might not be fully operational yet or are just being built
in selected countries. As a consequence, the adoption plan in Fig. 16 only plans for working with 20
NCCs in the remaining project runtime. More work with NCCs in 2024 depends on the sustainability
plan created in WP5.

Approaching the NCCs is similar to approaching the hosting sites. Apart from WP2 and WP5 experts,
e.g., for certification, also the technical, industrial, and software experts of the NCC should be part of
the collaboration meetings. After an initial presentation of the UAIF goals and benefits to NCCs, the
adoption steps are as follows. The first step in the adoption is an analysis of what industrial use cases
of the NCC can potentially make use of the UAIF. The second step includes discussions about which
HPC sites are currently being used by these industrial use cases and if good connections between
the corresponding NCC to some EuroHPC JU hosting site exist. Modifying the use case software
incrementally, e.g., in Fig. 16 roughly two month are estimated, with selected UAIF components,
where useful, is part of this step. In the third steps, test runs of industrial applications show again
the benefits of the UAIF components where adopted. The third step includes, if needed, specific job
scripts that work with the UAIF LAMEC API described in Sec. 3.6.

Figure 16 shows the rough timeline plan of working with NCCs on the potential adoption of selected
UAIF components in specific industrial use cases. Naming specific NCCs is explicitly avoided as it
is subject to the availability of corresponding technical and industrial experts. At the time of writing,
discussions are going on with several NCCs that are open to the idea. As shown in Fig. 16, in some
cases also NCCs have good contacts to hosting sites or are even the hosting site partner directly. In
such a cases, a closer collaboration towards the adoption of the UAIF at hosting sites as well working
jointly with corresponding NCCs is foreseen.

CoE RAISE - 951733 42 28.02.2023

D
2.13

S
oftw

are
layoutplan

for
a

unique
A

Ifram
ew

ork

Figure 16: Adoption plans for the UAIF for potential European stakeholders with a particular focus on industrial use cases and the EuroHPC JU hosting sites
where connections exist. The project aims to work with two four different NCCs every two month. Based on the sustainability strategy of WP5, the work with
other NCC will continue on 2024. The blue timeframe reflects the runtime of the CoE RAISE project while the grey timeframe depends on the sustainability
of the project and work performed in WP5.

C
oE

R
A

IS
E

-951733
43

28.02.2023

D2.13 Software layout plan for a unique AI framework

The timeline shown in Fig. 16 is quite ambitious. However, several of the UAIF components are
already used by NCC industrial use cases in the field of AI. This in turn will accelerate the adoption of
the UAIF in many industrial use cases while also not all components of the UAIF need to be adopted.
It thus depends on the interest of the NCC industrial use cases themselves.

Apart from a significant speed-up through scaling and better AI models for industrial users through
HPO, the incentive is quite high to save users significantly time in creating job scripts by cooperating
with CoE RAISE with respect to the LAMEC API. Hence, part of the collaboration with NCCs entails
also the feedback of working with specific job scripts on specific hosting site systems with the LAMEC
API and the job script generator capabilities that in turn might be another incentive.

Finally, it is clear that CoE RAISE has no influence on NCCs or any industrial users having time or
not willing to cooperate. This section just outlines a plan and gives no guarantees that NCCs will
engage as planned on this timeline that is subject to further discussions during the remainder of the
project.

4.3 Other Centers of Excellence

This section sketches possible benefits of adopting the UAIF in other CoEs, cf. Fig. 14. From the
beginning of the project, CoE RAISE was designed in such a way that the use cases are the drivers
of cross-sectional AI and HPC developments. Two primary application classes, i.e., the compute-
(WP3) and data-driven (WP4) use case categories were selected to drive developments towards
large-scale AI application, with WP2 being responsible for the "AI- and HPC-glue in between".

Exchanges with other CoEs, such as the CoE for Targeting Real Chemical Accuracy at the Exas-
cale (TREX)79, CoE for Engineering Applications (Excellerat)80, or the CoE for Combustion (CoEC)81,
have revealed AI-method development in some manner. However, these initiatives are not primarily
focused on Exascale deployment, and approach AI as a tool for other processes. For example, in
CoEC, super-resolution networks are developed to enhance the resolution in coarse-grained combus-
tion simulations, where they replace under-resolved phenomena as subgrid-scale models for Large
Eddy Simulations (LESs). The implementation of such models is, however, not in the mission of the
CoEC developments, which is the same for the other old CoEs. This has been exposed in discus-
sions with the coordinators of these CoEs.

AI has become a hot topic across various domains and is hence also part of the mission of the new
CoEs, which receive funding starting in 2023. For example, Excellerat P2, CoE for Exascale in Solid
Earth 2 (ChEESE-2P)82, CoE for Computational Biomolecular Research 3 (BioExcel-3)83, and CoE
for HPC and Big Data Technologies for Global Challenges 2 (HiDALGO2)84 all feature AI component
developments. Regardless that AI now plays a bigger role in recent CoEs, their focus remains on ad-
vancing a specific domain codes towards Exascale, in which AI might be a tool for physics modeling
and acceleration, but only few or non Exascale-AI knowledge is built up. That is, the core develop-
ments of the traditional CoEs push individual domain-specific codes to use new HPC architectures
and to prepare them for hero runs using the complete resources on the next-generation of supercom-
puters but might lack expertise in training large-scale AI technologies.

79TREX https://trex-coe.eu
80Excellerat https://www.excellerat.eu
81CoEC https://coec-project.eu
82ChEESE-2P https://cheese-coe.eu/
83BioExcel-3 https://bioexcel.eu/
84HiDALGO2 https://www.hpccoe.eu/hidalgo-2/

CoE RAISE - 951733 44 28.02.2023

https://trex-coe.eu
https://www.excellerat.eu
https://coec-project.eu
https://cheese-coe.eu/
https://bioexcel.eu/
https://www.hpccoe.eu/hidalgo-2/

D2.13 Software layout plan for a unique AI framework

This is exactly, where CoE RAISE and its UAIF fit in. The AI and HPC developments in CoE RAISE
are highly cross-sectional to use cases from other CoEs. It is a strong benefit in CoE RAISE that
these methods are developed for general application, despite being driven by specific use cases. A
special role in this play common AI architectures such as Fourier Neural Operators (FNOs), CNNs,
and GNNs. CNNs are widely used for extracting critical features from images to make accurate
predictions about their contents and GNNs are ideally suited to treat structured or unstructured (hi-
erarchical) simulation meshes, also with Adaptive Mesh Refinement (AMR) features, that are used
to discretize the space for multi-physics simulations. Such simulation methods are used by many
CoEs. The other UAIF component of high importance is HPO, which has in CoE RAISE proven to be
a method relevant to almost all AI trainings, and is particularly useful when the parameter space is
large. There is a rapidly developing need for efficient methods to couple simulations and AI training
and inference at runtime using heterogeneous architecture, or in other words MSAs. The European
Center for Research and Advanced Training in Scientific Computation (CERFACS) pioneers this field
and develops the Physics Deep Learning coupLer (PhyDLL)85 as part of the UAIF. FZJ and RWTH
are about to join the development and will contribute a C++ interface to PhyDLL. Obviously, all these
developments are relevant not only to CoE RAISE but – due to their general applicability – also for
the other CoEs.

As a consequence, it makes sense to provide services from CoE RAISE to the other CoEs with re-
spect to using the UAIF, further jointly developing models for specific CoE RAISE external use cases,
extending UAIF components by those, work on best practice documents, and provide and/or orga-
nize joint trainings. Such a training has already taken place with CoEC and is planned with TREX.
CoE RAISE is in this respect open to look at new use cases, find ways to generalize methods, and
make new AI technologies ready for HPC at large scale. A special focus is on using novel hardware
components and especially QA and QC technologies - all with respect to AI applications. Outreach in
this direction is already taking place and more and more developers in CoE RAISE and also outside
the project are attracted by CoE RAISE’s developments. For example, a group from the Deutsches
Elektronen-Synchrotron (DESY) are eager to join efforts with CERN and FZJ to work on Machine-
Learned Particle-Flow (MLPF)-like algorithms or other groups from RWTH and Delft University of
Technology (TUDelft) to explore QA systems for engineering applications.

To this end, CoE RAISE is going to foster the above described activities and ideas in the remainder
of the project duration. Obviously, when it comes to services and commercialization, the experts of
WP5 are involved and support detailing the strategies and planning the next steps.

4.4 Digital Twin Projects

DTs, or hyper-accurate digital representations of physical systems, have offered unprecedented in-
sights for researchers and have an increasing demand for ready-to-use tools that are able to process
and run complex and AI-based workflows in heterogeneous HPC environments. The DTs initiative is
part of a larger EU strategy with diverse scientific applications, such as earth sciences with Destina-
tion Earth86.

At the time of writing, options are explored to cooperate with DT projects like Destination Earth. Given
the close interaction with overlapping project partners, CoE RAISE first focuses on possible collabo-

85PhyDLL https://gitlab.com/cerfacs/phydll
86Digital Twin Destination Earth https://digital-strategy.ec.europa.eu/en/policies/destination-earth

CoE RAISE - 951733 45 28.02.2023

https://gitlab.com/cerfacs/phydll
https://digital-strategy.ec.europa.eu/en/policies/destination-earth

D2.13 Software layout plan for a unique AI framework

rations with the project interTwin87. In interTwin, the CoE RAISE partners CERN, CERFACS, and FZJ
are contributing. It is funded by the European Union Horizon Europe Programme and devleops a DT
blueprint architecture and an adaptable Digital Twin Engine (DTE) for various scientific areas through
interdisciplinary collaboration. The engine will serve as an open-source platform that provides generic
and tailored software components for modeling and simulation to integrate application-specific DTs.
The DTE will deliver the generic capabilities of high-volume, high-speed, real-time data processing,
forecast by domain-specific models, and validation tools. Figure 17 shows the different layers of the
planned DTE.

The modularity and functionality of the DTE will be demonstrated in four different scientific domains
– HEP (represented by CERN), radio astronomy, gravitational-wave astrophysics, as well as climate
and environmental monitoring, where CERFACS contributes. FZJ brings in its expertise and experi-
ence in hosting and providing a world-class HPC infrastructure and corresponding services, and staff
will assist in the development of novel AI technologies towards Exascale computing in a joint effort
with CoE RAISE. Furthermore, FZJ will provide and develop software solutions to improve access
to a wide range of heterogeneous computing and storage resources, including HPC and quantum
systems. More specifically, CoE RAISE researchers from FZJ and CERN collaborate on the devel-
opment of an AI workflow and method lifecycle. It is the aim to provide generalizable and widely
applicable tools that can design and use AI workflows that are capable of connecting to HPC execu-
tions in the background. These tools will be based on JupterJSC, which is also offered by CoE RAISE
as a service88, Jupyter Dashboards89, and on the AI-centric extension Elyra90. The framework is en-
visioned as modular system, where different modules represent a specific part of a flexibly designed
AI workflow. A wide range of modules – such as a model training module, a model evaluation module,
a distributed training frame work, and an HPO module – will be included to provide the users with
a predefined set of tools. The modules will be interchangeable, providing the opportunity to easily
integrate user-defined modules.

Obviously, there are similar development strands in interTwin and CoE RAISE and hence an intensive
collaboration is envisaged. At the project kick-off of interTwin (EGI Conference 2022 in Prague, Sep.
19 to 20, 2022), intense discussions on possible synergies took place. Figure 17 highlights possible
interactions and activities of CoE RAISE and interTwin. Especially the generalizable and scalable, as
well as the user-specific AI methods developed in CoE RAISE (and being part of the UAIF) are of par-
ticular interest to interTwin, see (2) in Fig. 17. The interTwin project seeks to establish a fundamental
database on AI technologies, ready to be used in Elyra, which could come from the UAIF for specific
DTs. Here, HPO and parallel training is of particular interest as it is common to most data-intensive
DT / simulation processes and is a core component of the interTwin developments. Such methods
are also already components of the UAIF and CoE RAISE could provide trainings and support con-
necting methods in the AI / ML module of interTwin to the HPC backbone. When it comes to the
usage of HPC / quantum components in the context of AI development, CoE RAISE alraedy provides
system-adapted start scripts in the UAIF, which will also be made available as a service online on the
CoE RAISE website, see (3) in Fig. 17. Considering that CoE RAISE is already offering JupyterJSC
as a service, extending this development platform by Elyra will benefit both CoE RAISE and interTwin.
Experiences in interTwin could be provided to CoE RAISE in this context. This CoE RAISE service

87interTwin https://www.intertwin.eu
88CoE RAISE Services https://www.coe-raise.eu/service-portal
89Jupyter Dashboards https://jupyter-dashboards-layout.readthedocs.io
90Elyra https://github.com/elyra-ai/elyra

CoE RAISE - 951733 46 28.02.2023

https://www.intertwin.eu
https://www.coe-raise.eu/service-portal
https://jupyter-dashboards-layout.readthedocs.io
https://github.com/elyra-ai/elyra

D2.13 Software layout plan for a unique AI framework

Possible new DTs coming from RAISE
DTs as new use cases in RAISE

Generalizable and scalable AI methods
Scalable use-case specific AI methodsSystem-adapted start scripts Joint use-case open-access database

1

2

3 4

Figure 17: Foreseen interactions and activities between CoE RAISE and interTwin.

CoE RAISE - 951733 47 28.02.2023

D2.13 Software layout plan for a unique AI framework

will serve as a blueprint to ease usage of AI development platforms on various HPC systems provided
Euopean-wide – it will hence also benefit interTwin. Another aspect could be sharing data reposito-
ries for AI training, see (4) in Fig. 17. CoE RAISE has already started to provide the community with
data, which is the base for AI training performed in CoE RAISE91. In case of an extension of the DT
applications in interTwin towards CoE RAISE-like use cases, training data, pre-trained models, and
best practice information would be available in the UAIF. Indeed, a mutual extension of applications
for the two projects is in line with looking beyond the scope of the current work plan of both projects
and with CoE RAISE’s ambition to transfer gained knowledge, experience, and models to new do-
mains. This is covered in (1) in Fig. 17.

To summarize, strong synergy potentials between the interTwin CoE RAISE projects have already
been identified and it is the plan in the remainder of this project to exploit these synergies and to join
the above mentioned development strands of the two projects. It should also be noted that interTwin
will also reach out to other DT activities including Destination Earth and that CoE RAISE will also
connect to this endeavor through interTwin.

4.5 AI Communities through OpenML and ClearML

The general idea of adoption by AI community platforms of the UAIF was already described above in
Sec. 2.2.6 and Sec. 2.2.7. At the time of writing, the future adoption plan in this section is still abstract
and considered to be refined during the remainder of the project period. Enabling interoperability be-
tween the UAIF with OpenML and ClearML (see Sec. 3.2) will provide an easier access to HPC for AI
application experts, especially those not previously engaged in HPC. The work on the corresponding
LAMEC API elements to enable interoperability with OpenML and ClearML is still work in progress.
CoE RAISE aims for an availability of basic interoperability from the second half of 2023.

In the meantime, also other AI platforms and initiatives such as the AI-on-demand (AIOD) platform92

are explored. One interesting element in this context is the AI4EU container specification that also
includes code examples. CoE RAISE has explored an initial set of AI4EU experiments, which shown
clear potentials for adopting HPC for both speed-up and improvement (in terms of accuracy) the AI
through HPO.

91CoE RAISE Open Data https://www.coe-raise.eu/open-data
92AI-on-Demand Platform https://www.ai4europe.eu/

CoE RAISE - 951733 48 28.02.2023

https://www.coe-raise.eu/open-data
https://www.ai4europe.eu/

D2.13 Software layout plan for a unique AI framework

5 Summary and Conclusions

As shown in Fig. 1, the software layout plan for the UAIF has been updated for a wide variety of com-
ponents, adding more details and implementation strategies. It can be concluded that the implemen-
tation process of the UAIF goes forward as planned with respect to scalability tests and benchmarking
of components, but also with the implementation and design of the LAMEC API. As co-designed by
the WP3 and WP4 use cases, corresponding components have also been adopted by the UAIF when
they showed scaling capability towards Exascale. Future work includes the analysis of several pos-
sible UAIF components such as Apache MXNet, Paddle Paddle93, or the general approach of some
WP3 use cases in regard of coupling simulations with AI methods as described in "Deliverable D2.3
- Report on porting and performance analysis" (M24).

JSC will renew its module stages in March 2023 making a lot of job scripts again invalid. Using the
LAMEC API of the UAIF instead, abstracts these changes and makes it easier for users to maintain
accurate job scripts. At the time of writing, the hosting for the job script generator web page is already
decided to be at JSC, providing also a simple GUI for the LAMEC API in the near future. It can further
be concluded that one of the objectives of the UAIF to ease the use of modules is still considered a
significant help.

The CoE RAISE project pursues an ambitious time schedule regarding the adoption of the UAIF and
its different components as outlined in Sec. 4. CoE RAISE continues to collaborate with EuroHPC
JU hosting sites, pursuing maximal support of the UAIF components to yield the largest impact for
CoE RAISE, and to generate pathways for future sustainability models. Plans for working jointly with
NCCs, other CoEs, DT projects, and often used AI community platforms have been shared. These
plans will contribute to a significantly increased adoption of the UAIF components. Working jointly
with these partners will further promote the uptake by industrial use cases. This in turn will bring the
focus on UAIF components such as the containerization and future LAMEC API use case adaptations
in this context.

Finally, it is important to note that the realization of the UAIF adoption plans jointly with external stake-
holders are not in full control of the CoE RAISE project alone and will significantly depend on the time
and expertise availability of the collaborating external partners. Initial discussions with the targeted
adoption stakeholders show, however, a high interest and thus make the WP2 members confident in
the adoption plans.

93Paddle Paddle https://github.com/PaddlePaddle/Paddle

CoE RAISE - 951733 49 28.02.2023

https://github.com/PaddlePaddle/Paddle

D2.13 Software layout plan for a unique AI framework

A Appendix A - Previous Framework Layout

A.1 M9 - Initial Framework Software Layout Plan

Figure 18 below shows the initial software layout plan of the UAIF that is described in "D2.12 -
Software Layout Plan for a unique AI Framework" (M9).

CoE RAISE - 951733 50 28.02.2023

D
2.13

S
oftw

are
layoutplan

for
a

unique
A

Ifram
ew

ork

Figure 18: Initial UAIF software layout plan at M9. A detailed description of its components alongside more details on the requirements RQ1-RQ7 are
available in Deliverable D2.12.

C
oE

R
A

IS
E

-951733
51

28.02.2023

D2.13 Software layout plan for a unique AI framework

A.2 M18 - Updated Framework Software Layout Plan

Figure 19 below shows the initial software layout plan of the UAIF that is described in "D2.10 -
Monitoring Report" (M18).

CoE RAISE - 951733 52 28.02.2023

D
2.13

S
oftw

are
layoutplan

for
a

unique
A

Ifram
ew

ork

Figure 19: Updated UAIF software layout plan at M18. A detailed description of its component updates are available in Deliverable D2.10. The major updates
include the key role of Hpyerparameter Tuners such as Ray Tune and moving from Singularity to Apptainer for container solutions.

C
oE

R
A

IS
E

-951733
53

28.02.2023

D2.13 Software layout plan for a unique AI framework

B Appendix B - Mural Board List of CoE RAISE Use Cases

The list of Mural Boards for each Interaction Room of WP2 vs. WP3/WP4 use cases was early
made available in the CoE RAISE project as part of the following Basic Support for Cooperative
Work (BSCW) folder:

https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/3591551

That same list is given here for readers convenience again per use case:

• Interaction Room Task 3.1 Turbulent Flow:
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621377866397/8613c384d54f66fb5e78599ff307a4ce8a9090c0?sender=u15e3008bb41d6628a5bb5701

• Interaction Room Task 3.2 Clean Energy:
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621377887905/cb44cca3eedd3bb9964fbfa36af16b1bfcce085f?sender=u15e3008bb41d6628a5bb5701

• Interaction Room Task 3.3 Reactive Flows:
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621377959022/0c363886f24833ecb19b025d87324b57fd50e2db?sender=u15e3008bb41d6628a5bb5701

• Interaction Room Task 3.4 Engine Design:
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621377976343/8d7aba6be09af3b2ffd305d2f709c53661ac889d?sender=u15e3008bb41d6628a5bb5701

• Interaction Room Task 3.5 Coating:
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621377991014/7a5d7e1eaf230178342d1e1d4a84d656d9055d52?sender=u15e3008bb41d6628a5bb5701

• Interaction Room Task 4.1 Fundamental Physics:
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621378007555/6f0d5285feaec5eafa515bd6676e84d8b4879d39?sender=u15e3008bb41d6628a5bb5701

• Interaction Room Task 4.2 Seismic Imaging:
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621378023838/a0b9503abb837ae3e28af4bb8d9adbec33874998?sender=u15e3008bb41d6628a5bb5701

• Interaction Room Task 4.3 Manufacturing:
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621378038069/93df6fa7a41093f4eaae7be9d72979de2ba42b9d?sender=u15e3008bb41d6628a5bb5701

• Interaction Room Task 4.4 Sound Engineering:
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621378050431/b5fa12219002404059f90a4bbb0101fa379a8503?sender=u15e3008bb41d6628a5bb5701

CoE RAISE - 951733 54 28.02.2023

https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/3591551
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621377866397/8613c384d54f66fb5e78599ff307a4ce8a9090c0?sender=u15e3008bb41d6628a5bb5701
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621377887905/cb44cca3eedd3bb9964fbfa36af16b1bfcce085f?sender=u15e3008bb41d6628a5bb5701
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621377959022/0c363886f24833ecb19b025d87324b57fd50e2db?sender=u15e3008bb41d6628a5bb5701
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621377976343/8d7aba6be09af3b2ffd305d2f709c53661ac889d?sender=u15e3008bb41d6628a5bb5701
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621377991014/7a5d7e1eaf230178342d1e1d4a84d656d9055d52?sender=u15e3008bb41d6628a5bb5701
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621378007555/6f0d5285feaec5eafa515bd6676e84d8b4879d39?sender=u15e3008bb41d6628a5bb5701
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621378023838/a0b9503abb837ae3e28af4bb8d9adbec33874998?sender=u15e3008bb41d6628a5bb5701
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621378038069/93df6fa7a41093f4eaae7be9d72979de2ba42b9d?sender=u15e3008bb41d6628a5bb5701
https://app.mural.co/t/matthiasbook8855/m/matthiasbook8855/1621378050431/b5fa12219002404059f90a4bbb0101fa379a8503?sender=u15e3008bb41d6628a5bb5701

D2.13 Software layout plan for a unique AI framework

References

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, Li Fei-Fei, ImageNet: A large-scale hierarchical
image database, in: 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE,
2009, pp. 248–255. doi:10.1109/CVPR.2009.5206848.

[2] M. Book, M. Riedel, H. Neukirchen, M. Goetz, Facilitating collaboration in high-performance
computing projects with an interaction room, in: Proceedings of the 4th ACM SIGPLAN Inter-
national Workshop on Software Engineering for Parallel Systems (SEPS 2017), 2017, pp. 46–47.
doi:10.1145/3141865.3142467.

[3] M. Book, M. Riedel, H. Neukirchen, E. Erlingsson, Facilitating collaboration in machine learning
and high-performance computing projects with an interaction room, in: Proceedings of the IEEE
18th International Conference on e-Science (e-Science), 2022, pp. 529–538. doi:10.1109/

eScience55777.2022.00093.

[4] M. Riedel, M. Book, H. Neukirchen, G. Cavallaro, A. Lintermann, Practice and experience using
high performance computing and quantum computing to speed-up data science methods in scien-
tific applications, in: 2022 45th Jubilee International Convention on Information, Communication
and Electronic Technology (MIPRO), IEEE, 2022, pp. 281–286. doi:10.23919/MIPRO55190.
2022.9803802.

[5] A. Yoo, J. Morris, M. Grondona, Slurm: Simple Linux utility for resource management, in: Pro-
ceedings of the Job Scheduling Strategies for Parallel Processing JSSPP - 9th International Work-
shop, 2003, pp. 44–60. doi:10.1007/10968987_3.

[6] N. Eicker, T. Lippert, T. Moschny, E. Suarez, D. project, The DEEP project an alternative ap-
proach to heterogeneous cluster-computing in the many-core era, Concurrency and computation:
Practice and Experience 28 (8) (2016) 2394–2411. doi:10.1002/cpe.3562.

[7] E. Suarez, N. Eicker, T. Lippert, Modular supercomputing architecture: from idea to production,
in: Contemporary high performance computing, CRC Press, 2019, pp. 223–255. doi:10.1201/
9781351036863.

[8] M. Riedel, G. Cavallaro, J. A. Benediktsson, Practice and experience in using parallel and scalable
machine learning in remote sensing from HPC over cloud to quantum computing, in: 2021 IEEE
International Geoscience and Remote Sensing Symposium IGARSS, IEEE, 2021, pp. 1571–
1574. doi:10.1109/IGARSS47720.2021.9554656.

[9] E. Pasetto, M. Riedel, F. Melgani, K. Michielsen, G. Cavallaro, Quantum SVR for chlorophyll
concentration estimation in water with remote sensing, IEEE Geoscience and Remote Sensing
Letters 19 (2022) 1–5. doi:10.1109/LGRS.2022.3200325.

[10] E. Wulff, M. Girone, D. Southwick, E. Cuba, J. G. Amboage, Hyperparameter opti-
mization, multi-node distributed training and benchmarking of ai-based HEP workloads us-
ing HPC, Poster presentation in CERN, https://indico.cern.ch/event/1106990/

contributions/4998112/attachments/2535527/4363652/ACAT2022_RAISE.pdf.

[11] S. Kesselheim, A. Herten, K. Krajsek, J. Ebert, J. Jitsev, M. Cherti, M. Langguth, B. Gong,
S. Stadtler, A. Mozaffari, et al., JUWELS BOOSTER-a supercomputer for large-scale AI research,

CoE RAISE - 951733 55 28.02.2023

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/3141865.3142467
https://doi.org/10.1109/eScience55777.2022.00093
https://doi.org/10.1109/eScience55777.2022.00093
https://doi.org/10.23919/MIPRO55190.2022.9803802
https://doi.org/10.23919/MIPRO55190.2022.9803802
https://doi.org/10.1007/10968987_3
https://doi.org/10.1002/cpe.3562
https://doi.org/10.1201/9781351036863
https://doi.org/10.1201/9781351036863
https://doi.org/10.1109/IGARSS47720.2021.9554656
https://doi.org/10.1109/LGRS.2022.3200325
https://indico.cern.ch/event/1106990/contributions/4998112/attachments/2535527/4363652/ACAT 2022_RAISE.pdf
https://indico.cern.ch/event/1106990/contributions/4998112/attachments/2535527/4363652/ACAT 2022_RAISE.pdf

D2.13 Software layout plan for a unique AI framework

in: High Performance Computing: ISC High Performance Digital 2021 International Workshops,
Frankfurt am Main, Germany, June 24-July 2, 2021, Revised Selected Papers 36, Springer, 2021,
pp. 453–468. doi:10.1007/978-3-030-90539-2.

[12] T. Elsken, J. H. Metzen, F. Hutter, Neural architecture search: a survey, The Journal of Machine
Learning Research 20 (1) (2019) 1997–2017. doi:10.48550/arXiv.1808.05377.

[13] S. Falkner, A. Klein, F. Hutter, BOHB: Robust and Efficient Hyperparameter Optimization at
Scale, in: Proceedings of the 35th International Conference on Machine Learning, Stockholm,
Sweden, 2018. arXiv:1807.01774.

[14] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, M. Hardt, B. Recht, A. Talwalkar, A System for
Massively Parallel Hyperparameter Tuning, in: Proceedings of Machine Learning and Systems,
Vol. 2, 2018, pp. 230–246. arXiv:1810.05934.

[15] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi, O. Vinyals,
T. Green, I. Dunning, K. Simonyan, C. Fernando, K. Kavukcuoglu, Population based training of
neural networks (2017). arXiv:1711.09846.

[16] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Hyperband: A Novel Bandit-
Based Approach to Hyperparameter Optimization, The Journal of Machine Learning Research
18 (1) (2017) 6765–6816. arXiv:1603.06560, doi:10.5555/3122009.3242042.

[17] K. Jamieson, A. Talwalkar, Non-stochastic Best Arm Identification and Hyperparameter Opti-
mization, in: Proceedings of the 19th International Conference on Artificial Intelligence and Statis-
tics, Vol. 51, PMLR, Cadiz, Spain, 2016, pp. 240–248. arXiv:1502.07943.

[18] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-parameter optimization, in:
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, K. Weinberger (Eds.), Advances in Neural Infor-
mation Processing Systems, Vol. 24, Curran Associates, Inc., 2011, https://proceedings.
neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

[19] C. Barakat, M. Aach, A. Schuppert, S. Brynjólfsson, S. Fritsch, M. Riedel, Analysis of chest
X-ray for COVID-19 diagnosis as a use case for an HPC-enabled data analysis and machine
learning platform for medical diagnosis support, Diagnostics 13 (3) (2023). doi:10.3390/

diagnostics13030391.

[20] J. Rasley, S. Rajbhandari, O. Ruwase, Y. He, Deepspeed: System optimizations enable training
deep learning models with over 100 billion parameters, in: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2020, pp. 3505–3506. doi:

10.1145/3394486.3406703.

[21] C. Paris, L. Gasparella, L. Bruzzone, A scalable high-performance unsupervised system for
producing large-scale hr land cover maps: The italian country case study, IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 15 (2022) 9146–9159.
doi:10.1109/JSTARS.2022.3209902.

[22] C. Paris, L. Bruzzone, D. Fernández-Prieto, A novel approach to the unsupervised update
of land-cover maps by classification of time series of multispectral images, IEEE Transactions
on Geoscience and Remote Sensing 57 (7) (2019) 4259–4277. doi:10.1109/TGRS.2018.

2890404.

CoE RAISE - 951733 56 28.02.2023

https://doi.org/10.1007/978-3-030-90539-2
https://doi.org/10.48550/arXiv.1808.05377
http://arxiv.org/abs/1807.01774
http://arxiv.org/abs/1810.05934
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1603.06560
https://doi.org/10.5555/3122009.3242042
http://arxiv.org/abs/1502.07943
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://doi.org/10.3390/diagnostics13030391
https://doi.org/10.3390/diagnostics13030391
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1109/JSTARS.2022.3209902
https://doi.org/10.1109/TGRS.2018.2890404
https://doi.org/10.1109/TGRS.2018.2890404

D2.13 Software layout plan for a unique AI framework

[23] A. A. Aleissaee, A. Kumar, R. M. Anwer, S. Khan, H. Cholakkal, G.-S. Xia, F. S. Khan, Trans-
formers in Remote Sensing: A Survey (2022). arXiv:2209.01206.

CoE RAISE - 951733 57 28.02.2023

http://arxiv.org/abs/2209.01206

D2.13 Software layout plan for a unique AI framework

List of Acronyms and Abbreviations

ACME Automated Certificate Management Environment

AI Artificial Intelligence

AIOD AI-on-demand

AMD Advanced Micro Devices

AMR Adaptive Mesh Refinement

API Application Programming Interface

ARM Advanced Reduced Instruction Set Computer Machine

ASHA Asynchronous Successive Halving Algorithm

BioExcel-3 CoE for Computational Biomolecular Research 3

BO Bayesian Optimization

BOHB Bayesian Optimization Hyperband

BSC Barcelona Supercomputing Centre

BSCW Basic Support for Cooperative Work

CAE Convolutional Autoencoder

CBO Centralized Bayesian Optimization

CERFACS European Center for Research and Advanced Training in Scientific
Computation

CERN European Organization for Nuclear Research

CFD Computational Fluid Dynamics

ChEESE-2P CoE for Exascale in Solid Earth 2

CNN Convolutional Neural Network

CoE Euopean Center of Excellence

CoEC CoE for Combustion

CoE RAISE European Center of Excellence in Exascale Computing "Research on AI- and
Simulation-Based Engineering at Exacale"

CPU Central Processing Unit

CSCS Swiss National Supercomputing Centre

CUDA Compute Unified Device Architecture

DALI NVIDIA Data Loading Library

DDP Distributed Data Parallel

DEEP Dynamical Exascale Entry Platform

DevOps Development Operations

DESY Deutsches Elektronen-Synchrotron

DT Digital Twin

DTE Digital Twin Engine

DL Deep Learning

EU European Union

Excellerat CoE for Engineering Applications

CoE RAISE - 951733 58 28.02.2023

D2.13 Software layout plan for a unique AI framework

FNO Fourier Neural Operator

FZJ Forschungszentrum Jülich GmbH

GNN Graph Neural Network

GPU Graphical Processing Unit

GUI Graphical User Interface

HeAT Helmholtz Analytics Toolkit

HEP High-Energy Physics

HiDALGO2 CoE for HPC and Big Data Technologies for Global Challenges 2

HPC High-Performance Computing

HPO Hyperparameter Optimization

HTTPS Hypertext Transfer Protocol Secure

IO Input/Output

IPU Intelligent Processing Unit

IR Intermediate Representation

JIT Just-In-Time Compilation

JSC Jülich Supercomputing Centre

JU Joint Undertaking

JUNIQ Juelich UNified Infrastructure for Quantum computing

JUPITER Joint Undertaking Pioneer for Innovative and Transformative Exascale
Research

JURECA Jülich Research on Exascale Cluster Architectures

JUWELS Juelich Wizard for European Leadership Science

LC Land Cover

LAMEC Load AI Modules, Environments, and Containers

LES Large Eddy Simulation

ML Machine Learning

MLOps Machine Learning Operations

MLPF Machine-Learned Particle-Flow

MPI Message Passing Interface

MSA Modular Supercomputing Architecture

NAS Neural Architecture Search

NAT Network Address Translation

NCC National Competence Center

NERSC National Energy Research Scientific Computing Center

NLP Natural Language Processing

ONNX Open Neural Network Exchange

OS Operating System

OSI Open System Interconnection

PBT Population Based Training

PCA Principal Component Analysis

CoE RAISE - 951733 59 28.02.2023

D2.13 Software layout plan for a unique AI framework

PhyDLL Physics Deep Learning coupLer

PRACE Partnership for Advanced Computing in Europe

QA Quantum Annealing

QC Quantum Computing

Q-SVR Quantum Support Vector Regression

QUBO Quadratic Unconstrained Optimization Problem

ROCm Radeon Open Compute platforM

RS Remote Sensing

RTU Riga Technical University

RWTH Rheinisch-Wesfälische Technische Hochschule Aachen - RWTH Aachen
University

SaaS Software as as Service

SLURM Simple Linux Utility for Resource Management

SME Small and Medium Enterprise

SPMD Single-Program Multiple-Data

SSH Secure Shell

SSPL Server Side Public License

SVM Support Vector Machine

SVR Support Vector Regression

TF Transformer

TL Transfer Learning

TLS Transport Layer Security

TPU Tensor Processing Unit

TREX CoE for Targeting Real Chemical Accuracy at the Exascale

TUDelft Delft University of Technology

UAIF Unique AI Framework

UQ Uncertainty Quantification

VM Virtual Machine

VSC Vlaams Supercomputer Centre

WOPRO Work Programme

WP Work Package

XLA Accelerated Linear Algebra

ZeRO Zero Redundancy Optimizer

Z Z

CoE RAISE - 951733 60 28.02.2023

	Project and Deliverable Information Sheet
	Document Control Sheet
	Document Status Sheet
	Document Keywords
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Introduction
	Overall Framework Software Layout Plan
	Applications
	A - Compute- and Data-Intensive CoE RAISE Use Cases
	B - Domain-Specific CoE Use Cases [New]
	C - NCC and Industrial Use Cases [New]
	D - Digital Twins Use Cases [New]

	Reference Architecture Elements
	E - Secure Shell (SSH) Low-Level Access
	F - Jupyter Notebooks High-Level Access
	G - Application Workflows [New]
	H - LAMEC API ONNX Standard Elements [New]
	I - LAMEC API Community Platform Integration [New]
	J - Community Platform OpenML Interoperability [New]
	K - ClearML MLOps Platform Interoperability [New]
	L - LAMEC API Facade Pattern Implementation [New]
	M - LAMEC API Batch Script Repository [New]
	N - LAMEC API Batch Script Generator [New]
	O - Open HPC/AI Script Generator Web Page(s) [New]

	Software Infrastructure
	P - Basic Science Libraries
	Q - Deep Learning Libraries [New]
	R - Distributed Deep Learning Tools [New]
	S - Hyperparameter Tuner [New]

	Hardware Infrastructure
	T - Prototype HPC Systems [New]
	U - D-Wave Quantum Annealer System [New]
	V - Modular HPC System JUWELS
	W - Container Technologies
	X - EuroHPC JU Hosting Sites [New]
	Y - EU HPC Systems [New]

	Updates of Selected Framework Components
	DALI Data Loader
	ClearML
	Purpose
	Deployment architecture

	Hyperparameter Tuning
	Ray Tune
	DeepHyper

	Basic Science Libraries: NumPy and scikit-learn
	NumPy
	scikit-learn

	DeepSpeed
	LAMEC API
	Google JAX
	Quantum Support Vector Regression
	Workflow with Apache Airflow

	Adoption Plans of the Framework
	Adoption Plans for EuroHPC JU Hosting Sites
	EuroCC-2 National Competence Centers (NCCs)
	Other Centers of Excellence
	Digital Twin Projects
	AI Communities through OpenML and ClearML

	Summary and Conclusions
	Appendix A - Previous Framework Layout
	M9 - Initial Framework Software Layout Plan
	M18 - Updated Framework Software Layout Plan

	Appendix B - Mural Board List of CoE RAISE Use Cases
	References
	List of Acronyms and Abbreviations
	1c0cde6b-0030-4fd5-9266-1c233cbc0a7f.pdf
	Project and Deliverable Information Sheet
	Document Control Sheet
	Document Status Sheet
	Document Keywords
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Introduction
	Overall Framework Software Layout Plan
	Applications
	A - Compute- and Data-Intensive CoE RAISE Use Cases
	B - Domain-Specific CoE Use Cases [New]
	C - NCC and Industrial Use Cases [New]
	D - Digital Twins Use Cases [New]

	Reference Architecture Elements
	E - Secure Shell (SSH) Low-Level Access
	F - Jupyter Notebooks High-Level Access
	G - Application Workflows [New]
	H - LAMEC API ONNX Standard Elements [New]
	I - LAMEC API Community Platform Integration [New]
	J - Community Platform OpenML Interoperability [New]
	K - ClearML MLOps Platform Interoperability [New]
	L - LAMEC API Facade Pattern Implementation [New]
	M - LAMEC API Batch Script Repository [New]
	N - LAMEC API Batch Script Generator [New]
	O - Open HPC/AI Script Generator Web Page(s) [New]

	Software Infrastructure
	P - Basic Science Libraries
	Q - Deep Learning Libraries [New]
	R - Distributed Deep Learning Tools [New]
	S - Hyperparameter Tuner [New]

	Hardware Infrastructure
	T - Prototype HPC Systems [New]
	U - D-Wave Quantum Annealer System [New]
	V - Modular HPC System JUWELS
	W - Container Technologies
	X - EuroHPC JU Hosting Sites [New]
	Y - EU HPC Systems [New]

	Updates of Selected Framework Components
	DALI Data Loader
	ClearML
	Purpose
	Deployment architecture

	Hyperparameter Tuning
	Ray Tune
	DeepHyper

	Basic Science Libraries: NumPy and scikit-learn
	NumPy
	scikit-learn

	DeepSpeed
	LAMEC API
	Google JAX
	Quantum Support Vector Regression
	Workflow with Apache Airflow

	Adoption Plans of the Framework
	Adoption Plans for EuroHPC JU Hosting Sites
	EuroCC-2 National Competence Centers (NCCs)
	Other Centers of Excellence
	Digital Twin Projects
	AI Communities through OpenML and ClearML

	Summary and Conclusions
	Appendix A - Previous Framework Layout
	M9 - Initial Framework Software Layout Plan
	M18 - Updated Framework Software Layout Plan

	Appendix B - Mural Board List of CoE RAISE Use Cases
	References
	List of Acronyms and Abbreviations

	1c0cde6b-0030-4fd5-9266-1c233cbc0a7f.pdf
	Project and Deliverable Information Sheet
	Document Control Sheet
	Document Status Sheet
	Document Keywords
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Introduction
	Overall Framework Software Layout Plan
	Applications
	A - Compute- and Data-Intensive CoE RAISE Use Cases
	B - Domain-Specific CoE Use Cases [New]
	C - NCC and Industrial Use Cases [New]
	D - Digital Twins Use Cases [New]

	Reference Architecture Elements
	E - Secure Shell (SSH) Low-Level Access
	F - Jupyter Notebooks High-Level Access
	G - Application Workflows [New]
	H - LAMEC API ONNX Standard Elements [New]
	I - LAMEC API Community Platform Integration [New]
	J - Community Platform OpenML Interoperability [New]
	K - ClearML MLOps Platform Interoperability [New]
	L - LAMEC API Facade Pattern Implementation [New]
	M - LAMEC API Batch Script Repository [New]
	N - LAMEC API Batch Script Generator [New]
	O - Open HPC/AI Script Generator Web Page(s) [New]

	Software Infrastructure
	P - Basic Science Libraries
	Q - Deep Learning Libraries [New]
	R - Distributed Deep Learning Tools [New]
	S - Hyperparameter Tuner [New]

	Hardware Infrastructure
	T - Prototype HPC Systems [New]
	U - D-Wave Quantum Annealer System [New]
	V - Modular HPC System JUWELS
	W - Container Technologies
	X - EuroHPC JU Hosting Sites [New]
	Y - EU HPC Systems [New]

	Updates of Selected Framework Components
	DALI Data Loader
	ClearML
	Purpose
	Deployment architecture

	Hyperparameter Tuning
	Ray Tune
	DeepHyper

	Basic Science Libraries: NumPy and scikit-learn
	NumPy
	scikit-learn

	DeepSpeed
	LAMEC API
	Google JAX
	Quantum Support Vector Regression
	Workflow with Apache Airflow

	Adoption Plans of the Framework
	Adoption Plans for EuroHPC JU Hosting Sites
	EuroCC-2 National Competence Centers (NCCs)
	Other Centers of Excellence
	Digital Twin Projects
	AI Communities through OpenML and ClearML

	Summary and Conclusions
	Appendix A - Previous Framework Layout
	M9 - Initial Framework Software Layout Plan
	M18 - Updated Framework Software Layout Plan

	Appendix B - Mural Board List of CoE RAISE Use Cases
	References
	List of Acronyms and Abbreviations
	1c0cde6b-0030-4fd5-9266-1c233cbc0a7f.pdf
	Project and Deliverable Information Sheet
	Document Control Sheet
	Document Status Sheet
	Document Keywords
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Introduction
	Overall Framework Software Layout Plan
	Applications
	A - Compute- and Data-Intensive CoE RAISE Use Cases
	B - Domain-Specific CoE Use Cases [New]
	C - NCC and Industrial Use Cases [New]
	D - Digital Twins Use Cases [New]

	Reference Architecture Elements
	E - Secure Shell (SSH) Low-Level Access
	F - Jupyter Notebooks High-Level Access
	G - Application Workflows [New]
	H - LAMEC API ONNX Standard Elements [New]
	I - LAMEC API Community Platform Integration [New]
	J - Community Platform OpenML Interoperability [New]
	K - ClearML MLOps Platform Interoperability [New]
	L - LAMEC API Facade Pattern Implementation [New]
	M - LAMEC API Batch Script Repository [New]
	N - LAMEC API Batch Script Generator [New]
	O - Open HPC/AI Script Generator Web Page(s) [New]

	Software Infrastructure
	P - Basic Science Libraries
	Q - Deep Learning Libraries [New]
	R - Distributed Deep Learning Tools [New]
	S - Hyperparameter Tuner [New]

	Hardware Infrastructure
	T - Prototype HPC Systems [New]
	U - D-Wave Quantum Annealer System [New]
	V - Modular HPC System JUWELS
	W - Container Technologies
	X - EuroHPC JU Hosting Sites [New]
	Y - EU HPC Systems [New]

	Updates of Selected Framework Components
	DALI Data Loader
	ClearML
	Purpose
	Deployment architecture

	Hyperparameter Tuning
	Ray Tune
	DeepHyper

	Basic Science Libraries: NumPy and scikit-learn
	NumPy
	scikit-learn

	DeepSpeed
	LAMEC API
	Google JAX
	Quantum Support Vector Regression
	Workflow with Apache Airflow

	Adoption Plans of the Framework
	Adoption Plans for EuroHPC JU Hosting Sites
	EuroCC-2 National Competence Centers (NCCs)
	Other Centers of Excellence
	Digital Twin Projects
	AI Communities through OpenML and ClearML

	Summary and Conclusions
	Appendix A - Previous Framework Layout
	M9 - Initial Framework Software Layout Plan
	M18 - Updated Framework Software Layout Plan

	Appendix B - Mural Board List of CoE RAISE Use Cases
	References
	List of Acronyms and Abbreviations

