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One of the main approaches for event reconstruction at 
the Large Hadron Collider (LHC) currently relies on particle 
flow (PF), which combines hits across subdetectors, 
considering the full event to reconstruct all stable particles 
in the event. Given the planned High-Luminosity (HL) LHC 
program, as well as possible future experimental programs 
of e.g., the Future Circular Collider (FCC), computationally 
efficient and physically optimal evolutions of the PF-based 
event reconstruction need to be developed and tested. 
 
Among various approaches, there has been considerable 
interest and development of Machine Learning (ML)-based 
reconstruction methods, including for full-event 
reconstruction. To support rapid progress of such 
approaches, it is beneficial to establish open datasets with 
sufficient realism and granularity for testing various types of 
approaches. 
 
In light of this, we describe, and make available, an extensive open dataset of physics events with full GEANT4 
simulation, suitable for PF reconstruction, available in the EDM4HEP1 format. 
 
We generate dedicated events with Pythia82 and carry out a full detector simulation with GEANT4 using the 
Key4HEP framework3. In particular, we use the CLIC detector model4, along with the Marlin reconstruction 
code5, and the Pandora6,7,8 package for a baseline particle flow implementation. Although the implementation 
is not specific to the detector model, the CLIC model is chosen since, to our knowledge, it is one of the most 
complete publicly available realistic detector models. 
 
The datasets with all generator particles (training targets); reconstructed tracks, calorimeter hits and clusters 
(training inputs); as well as reconstructed particles from the baseline Pandora algorithm (for comparison) are 
saved in the EDM4HEP format. In addition, all associations between the aforementioned objects are saved in 
the standard format. Overall, the size of the dataset is approximately 2.5 TB. 
 
This dataset is being used in studies of the Machine-Learned Particle-Flow (MLPF) algorithm9,10,11 and new 
results are being prepared for publication in the near future. Any works using this dataset should cite the 
corresponding paper, once published. 
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Figure 1: 3D visualization of the generator particles 
(targets) and the calorimeter hits in a single event. 



The dataset consists of physical collision events as well as particle gun samples and is packaged in 43 tar 
archives with the naming convention <process_name>_<number>.tar for the physical samples and <process_name>.tar 
for the gun samples, where <process_name> refers to the name of the physics process and <number> is a running 
integer. Each tar archive contains ROOT12 files where the physics events are saved in the EDM4HEP format. To 
process the data for ML tasks, the Python package uproot13, which allows for convenient data loading of ROOT 
files into Python and NumPy objects, is recommended. 
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