Publications
2024 | 11 Publications
Q2/2024
X. Liu, M. Rüttgers, A. Quercia, R. Egele, E. Pfaehler, R. Shende, M. Aach, W. Schröder, P. Balaprakash, A. Lintermann, Refining computer tomography data with super-resolution networks to increase the accuracy of respiratory flow simulations, Future Generation Computer Systems 159 (fist online) (2024) 474–488.
DOI: 10.1016/j.future.2024.05.020
Q2/2024
Garcia Amboage, J. P., Wulff, E., Girone, M. & Pena, T.F. 2024. "Model Performance Prediction for Hyperparameter Optimization of Deep Learning Models Using High Performance Computing and Quantum Annealing", EPJ Web of Conferences 295, 12005 (2024).
DOI: 10.1016/j.future.2024.05.005
Q2/2024
A. Higashida, K. Ando, M. Rüttgers, A. Lintermann, M. Tsubokura, Robustness evaluation of large-scale machine learning-based reduced order models for reproducing flow fields, Future Generation Computer Systems (2024).
DOI: .10.1051/epjconf/202429512005
Q2/2024
Hassanian, R., Shahinfar A., Helgadóttir Á. & Riedel, M.. 2024. " Optimizing Wind Energy Production: Leveraging Deep Learning Models Informed with On-Site Data and Assessing Scalability through HPC" Acta Polytechnica Hungarica, no. 21: 9, 2024
DOI: 10.12700/APH.21.9.2024.9.4
Q2/2024
Hassanian, R., Aach M., Lintermann A., Helgadóttir Á. & Riedel M.. 2024. " Turbulent Flow Prediction-Simulation: Strained flow with Initial Isotropic Condition Using a GRU Model Trained by an Experimental Lagrangian Framework, with Emphasis on Hyperparameter Optimization." Fluids 9, no. 4: 84, 2024
DOI: 10.3390/fluids9040084
Q2/2024
Pata, J., Wulff, E., Mokhtar, F., Southwick, D., Zhang, M., Girone, M., & Duarte, J. (2024). Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors. Communications Physics, 7(1), 124.
DOI: 10.1038/s42005-024-01599-5
Q2/2024
Rüttgers, M., Waldmann, M., Vogt, K., Ilgner, J., Schröder, W., & Lintermann, A. (2024). Automated surgery planning for an obstructed nose by combining computational fluid dynamics with reinforcement learning. Computers in Biology and Medicine, 173, 108383.
DOI: 10.1016/j.compbiomed.2024.108383
Q2/2024
R. Hassanian, P. Costa, A. Helgadottir, M. Riedel, Deep learning model capable of simulating the inertial particle path in particle-laden turbulent flow, in: 5th International Conference on Numerical Methods in Multiphase Flows (ICNMMF-5), Reykjavik, Iceland, 2024.
URL: https://d3ijlhudpq9yjw.cloudfront.net/77509db0-a280-474a-bc75-f9bd9dcd4fa7.pdf
Q2/2024
Hassanian, R., Aach, M., Lintermann, A., Helgadóttir, Á., & Riedel, M. (2024). Turbulent Flow Prediction-Simulation: Strained Flow with Initial Isotropic Condition Using a GRU Model Trained by an Experimental Lagrangian Framework, with Emphasis on Hyperparameter Optimization. Fluids, 9(4, Special Issue Turbulent Flow, 2nd Edition), 84.
DOI: 10.3390/fluids9040084
Q1/2024
Demou, A. D., & Savva, N. (2024). Hybrid AI-Analytical Modeling of Droplet Dynamics on Inclined Heterogeneous Surfaces. Mathematics, 12(8).
DOI: 10.3390/math12081188
Q1/2024
Hassanian, R., Yeganeh, N., & Riedel, M. 2024. "Wind Velocity and Forced Heat Transfer Model for Photovoltaic Module" Fluids 9, no. 1: 17, 2024
DOI: 10.3390/fluids9010017
2023 | 24 Publications
Q4/2023
Aach, M., Sarma, R., Inanc, E., Riedel, M., & Lintermann, A. (2023). Short Paper: Accelerating Hyperparameter Optimization Algorithms with Mixed Precision. Proceedings of the SC ’23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, 1776–1779.
DOI: 10.1145/3624062.3624259
Q4/2023
M. Aach, E. Inanc, R. Sarma, M. Riedel, A. Lintermann, Optimal Resource Allocation for Early Stopping-based Neural Architecture Search Methods, in: A. Faust, R. Garnett, C. White, F. Hutter, J. R. Gardner (Eds.), Proceedings of the Second International Conference on Automated Machine Learning (AutoML), Vol. 228, PMLR, Potsdam/Berlin, Germany, 2023, pp. 12/1—-17.
URL: https://proceedings.mlr.press/v228/aach23a/aach23a.pdf
Q4/2023
Hassanian, R. & Riedel, M. 2023. "Buckling Assessment in the Dynamics Mechanisms, Stewart Platform Case Study: In the Context of Loads and Joints, Deflection Positions Gradient" Computation 11, no. 11: 227, 2023
DOI: 10.3390/computation11110227
Q4/2023
V. Coulon, J. Gaucherand, V. Xing, D. Laera, C. Lapeyre, T. Poinsot, Direct numerical simulations of methane, ammonia-hydrogen and hydrogen turbulent premixed flames, Combustion and Flame 256 (2023) 112933.
DOI: 10.1016/j.combustflame.2023.112933
Q4/2023
F. Hübenthal, M. Albers, M. Meinke, W. Schröder, Surrogate-based optimization for active drag reduction of turbulent boundary layer flows, PAMM 23 (4) (2023).
DOI: 10.1002/pamm.202300190
Q4/2023
R. Hassanian, A. Helgadottir, C. Velte, M. Riedel, Turbulent flow prediction: Lagrangian Particle Tracking-Deep Learning (LPT-DL) based models, in: APS 76th Annual Meeting of the Division of Fluid Dynamics, Bulletin of the American Physical Society, Washington, DC, 2023.
URL: meetings.aps.org/Meeting/DFD23/Session/L24.8
Q4/2023
Cavallaro, G., Sedona, R., Riedel, M., Lintermann, A., & Michielsen, K. (2023). "Challenges and Opportunities in the Adoption of High Performance Computing for Earth Observation in the Exascale Era". In P. Soille, S. Lumnitz, & S. Albani (Eds.), Proceedings of the 2023 conference on Big Data from Space (BiDS’23) - From foresight to impact (pp. 25–28). Publications Office of the European Union
DOI: 10.2760/46796
Q4/2023
Demou, A. & Savva, N., “AI-assisted modeling of capillary-driven droplet dynamics”, Cambridge University Press, October 2023
DOI: 10.1017/dce.2023.19
Q3/2023
R. Hassanian, H. Myneni, Á. Helgadóttir & M. Riedel, “Deciphering the dynamics of distorted turbulent flows: Lagrangian particle tracking and chaos prediction through transformer-based deep learning models”, Physics of Fluids Volume 35, Issue 7, July 2023
DOI: 10.1063/5.0157897
Q3/2023
Blanc, C., Ahar, A. & De Grave, K., “Reference dataset and benchmark for reconstructing laser parameters from on-axis video in powder bed fusion of bulk stainless steel”, Additive Manufacturing Letters, Volume 7, December 2023, 100161
DOI: 10.1016/j.addlet.2023.100161
Q3/2023
J. Pata, E. Wulff, J. Duarte, F. Mokhtar, M. Zhang, M. Girone, D. Southwick, Simulated datasets for detector and particle flow reconstruction: CLIC detector (2023).
DOI: 10.5281/zenodo.8260741
Q3/2023
J. Pata, J. Duarte, F. Mokhtar, E. Wulff, J. Yoo, J.-R. Vlimant, M. Pierini, M. Girone, Machine Learning for Particle Flow Reconstruction at CMS, Journal of Physics: Conference Series 2438 (1) (2023) 012100.
DOI: 10.1088/1742-6596/2438/1/012100
Q2/2023
Hassanian, R. & Riedel, M. Leading-Edge Erosion and Floating Particles: Stagnation Point Simulation in Particle-Laden Turbulent Flow via Lagrangian Particle Tracking, Machines 11, no. 5: 566, 2023
DOI: 10.3390/machines11050566
Q2/2023
R. Hassanian, A. Helgadottir, M. Riedel, Iceland wind farm assessment case study and development: An empirical data from wind and wind turbine, Cleaner Energy Systems 4 (2023) 100058.
DOI: 10.1016/j.cles.2023.100058
Q2/2023
M. Riedel, C. Barakat, S. Fritsch, M. Aach, J. Busch, A. Lintermann, A. Schuppert, S. Brynjólfsson, H. Neukirchen, M. Book, Enabling Hyperparameter-Tuning of AI Models for Healthcare using the CoE RAISE Unique AI Framework for HPC, in: 2023 46th MIPRO ICT and Electronics Convention (MIPRO), IEEE, 2023, pp. 435–440.
DOI: 10.23919/MIPRO57284.2023.10159755
Q2/2023
Hassanian, R. (Corresponding author), Helgadottir, A., Aach, M., Lintermann, A. & Riedel, M., “A proposed hybrid two-stage DL-HPC method for wind speed forecasting: using the first average forecast output for long-term forecasting”, Proceedings of the IACM Computational Fluids Conference (CFC2023).
JuSER (Open Access)
Q2/2023
J. G. Amboage, E. Wulff, M. Girone, T. F. Pena, Optimizing AI-based HEP algorithms using HPC and Quantum Computing, in: 26th International Conference on Computing in High Energy and Nuclear Physics CHEP 2023, Norfolk, VA, USA, 2023.
URL: https://indico.jlab.org/event/459/contributions/11847/attachments/9508/13784/CHEP2023___RAISE_Poster_FINAL.pdf
Q2/2023
Aach, M. (Corresponding author), Wulff, E., Pasetto, E., Delilbasic, A., Sarma, R., Inanc, E., Girone, M., Riedel, M. & Lintermann, A., “A Hybrid Quantum-Classical Workflow for Hyperparameter Optimization of Neural Networks”, ISC High Performance 2023, ISC2023.
JuSER (Open Access)
Q2/2023
Aach, M., Inanc, E., Sarma, R., Riedel, M. & Lintermann, A. “Large scale performance analysis of distributed deep learning frameworks for convolutional neural networks”, J Big Data 10, 96 (2023).
DOI: 10.1186/s40537-023-00765-w | JuSER (Open Access)
Q1/2023
Inanc, E. (Corresponding author), Sarma, R., Aach, M. & Lintermann, A., “AI4HPC v0.1”, zenodo.
DOI: 10.5281/ZENODO.7705421 | JuSER (Open Access)
Q1/2023
Albers, M., Meysonnat, P. S., Fernex, D., Semaan, R., Noack, B. R., Schröder, W. & Lintermann, A. (Corresponding author), “Actuated Turbulent Boundary Layer Flows Dataset”, EUDAT - B2SHARE
DOI: 10.34730/5dbc8e35f21241d0889906136cf28d26 | JuSER (Open Access)
Q1/2023
Barakat, C. (Corresponding author), Aach, M., Schuppert, A., Brynjólfsson, S., Fritsch, S. & Riedel, M., “Analysis of Chest X-ray for COVID-19 Diagnosis as a Use Case for an HPC-Enabled Data Analysis and Machine Learning Platform for Medical Diagnosis Support”, Diagnostics 2023, 13(3), 391
DOI: 10.3390/diagnostics13030391 | JuSER (Open Access)
Q1/2023
Hassanian R., Helgadottir A., L Bouhlali L., Riedel M. “An Experiment Generates a Specified Mean Strained Rate Turbulent Flow: Dynamics of Particles”, Physics of Fluids, Vol. 35(1), 2023.
DOI: 10.1063/5.0134306
Q1/2023
Orland, F., Brose, K. S., Bissantz, J., Ferraro, F., Terboven, C. & Hasse, C. (2023). A Case Study on Coupling OpenFOAM with Different Machine Learning Frameworks.
DOI: 10.1109/AI4S56813.2022.00007
2022 | 20 Publications
Q4/2022
Hassanian, R., Helgadottir, A. & Riedel, M. “Parallel computing accelerates sequential deep networks model in turbulent flow forecasting”. The International Conference for High Performance Computing, Networking, Storage, and Analysis, SC22, Dallas, November 13-18, Dallas, 2022.
SC22 Supercomputing (Open Access)
Q4/2022
Hassanian, R., Helgadottir, A. & Riedel, M. “Deep Learning Forecasts a Strained Turbulent Flow Velocity Field in Temporal Lagrangian Framework: Comparison of LSTM and GRU”, Fluids, 2022, 7(11), 344.
DOI: 10.3390/fluids7110344
Q4/2022
Gargallo-Peiró, A., Revilla, G., Avila, M. & Houzeaux, G. (2022). A Level Set-Based Actuator Disc Model for Turbine Realignment in Wind Farm Simulation: Meshing, Convergence and Applications.
DOI: 1996-1073/15/23/8877 | UPC repository (Open Access)
Q3/2022
M. Aach, R. Sedona, A. Lintermann, G. Cavallaro, H. Neukirchen and M. Riedel, "Accelerating Hyperparameter Tuning of a Deep Learning Model for Remote Sensing Image Classification," in IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 263-266, 2022
DOI: 10.1109/IGARSS46834.2022.9883257 | JuSER (Open Access)
Q3/2022
R. Sedona, C. Paris, L. Tian, M. Riedel and G. Cavallaro, "An Automatic Approach for the Production of a Time Series of Consistent Land-Cover Maps Based on Long-Short Term Memory," in IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 203-206, 2022
Q3/2022
R. Hassanian, H. Myneni, A. Helgadottir, M. Riedel, Vertical axis wind turbine powers telecom towers: Green and clean configuration, in: 2023 6th International Conference on Electrical Engineering and Green Energy (CEEGE), 2023, pp. 114–118
Q3/2022
Hassanian, R., Riedel, M. & Bouhlali, L. (2022). The Capability of Recurrent Neural Networks to Predict Turbulence Flow via Spatiotemporal Features. IEEE 10th Jubilee International Conference on Computational Cybernetics and Cyber-Medical Systems (ICCC 2022)
DOI: https://ieeexplore.ieee.org/document/9922754 | UoI repository (Open Access)
Q3/2022
Mira, D., Pérez-Sánchez, E. J., Borell, R. & Houzeaux, G. (2022). HPC-enabling technologies for high-fidelity combustion simulations.
Q3/2022
Slaidiņš, I., Timrote, I., Zagorskis, V. & Cikovskis, L. (2022). Educational Service Platform for Artificial Intelligence Resources.
DOI: 10.1109/EAEEIE54893.2022.9820214 | ortus.rtu.lv (OpenAccess)
Q3/2022
Sumner, E. M.; Unnthorsson, R. & Riedel, M. (2022). Replicating Human Sound Localization with a Multi-Layer Perceptron.
Q2/2022
R. Sarma, M. Albers, E. Inanc, M. Aach, W. Schröder, A. Lintermann, Parallel and Scalable Deep Learning to Reconstruct Actuated Turbulent Boundary Layer Flows. Part I: Investigation of Autoencoder-Based Trainings, in: ParCFD2022 33rd International Conference on Parallel Computational Fluid Dynamics, Alba, Italy, 2022.
Q2/2022
E. Inanc, M. Albers, R. Sarma, M. Aach, W. Schröder, A. Lintermann, Parallel and Scalable Deep Learning to Reconstruct Actuated Turbulent Boundary Layer Flows. Part II: Autoencoder Training on Hpc Systems, in: ParCFD2022 33rd International Conference on Parallel Computational Fluid Dynamics, Alba, Italy, 2022.
Q2/2022
Hassanian R., Riedel M., Helgadottir A.,Costa P. & Bouhlali L. (2022). JUWELS Booster -- Lagrangian Particle Tracking Data of a Straining Turbulent Flow Assessed Using Machine Learning and Parallel Computing. ParCFD 2022 conference, Alba, Italy
Q2/2022
Kesselheim, S., Herten, A., Krajsek, K., Ebert, J., Jitsev, J., Cherti, M., Langguth, M., Gong, B., Stadtler, S., Mozaffari, A., Cavallaro, G., Sedona, R., Schug, A., Strube, A., Kamath, R., Schultz, M. G., Riedel, M. & Lippert, T. (2022). JUWELS Booster -- A Supercomputer for Large-Scale AI Research.
Q2/2022
Hassanian, R., Yeganeh, N. & Riedel, M. (2022). Numerical Investigation on the Acceleration Vibration Response of Linear Actuator.
Q2/2022
E. M. Sumner, R. Unnthorsson, M. Riedel, Replicating Human Sound Localization with a Multi-Layer Perceptron, in: Proceedings of the 19th Sound and Music Computing Conference„ Saint-Étienne, France, 2022.
DOI: 10.5281/zenodo.6797854
Q2/2022
Hassanian, R. & Riedel, M. (2022). Mechanical Elements Analysis of Stewart Platform: Computational Approach.
Q1/2022
Sumner, E. M., Aach, M., Lintermann, A., Unnthorsson, R. & Riedel, M. (2022). Speed-Up of Machine Learning for Sound Localization via High-Performance Computing. 2022 26th International Conference on Information Technology (IT)
DOI: 10.1109/IT54280.2022.9743519 | opinvisindi (OpenAccess)
Q1/2022
Hassanian, R., Riedel, M., & Yeganeh N. (2022). A Review in Context to Wind Effect on NOCT
Model for Photovoltaic Panel. Crimson Publisher
DOI:
Q1/2022
Hassanian, R., Riedel, M., Helgadottir A., Yeganeh N. & Unnthorsson R. (2022). Implicit Equation for Photovoltaic Module Temperature and Efficiency via Heat Transfer Computational Model. Thermo 2022
2021 | 5 Publications
Q4/2021
Hassanian, R., Yeganeh, N., Unnthorsson, R. & Riedel, M. (2021). A Practical Approach for Estimating the Optimum Tilt Angle of a Photovoltaic Panel for a Long Period—Experimental Recorded Data. MDPI Journals 2021
Q4/2021
Rüttgers, M., Waldmann, M., Schröder, W. & Lintermann, A. (2021). Machine-Learning-Based Control of Perturbed and Heated Channel Flows. High Performance Computing, Proceedings of the 36th International Conference, ISC High Performance 2021
Q3/2021
Delilbasic, A., Cavallaro, G., Willsch, M., Melgani, F., Michielsen, K. & Riedel, M. (2021). Quantum Support Vector Machine Algorithms for Remote Sensing Data Classification. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
Q3/2021
Sedona, R., Paris, C., Cavallaro, G., Bruzzone, L. & Riedel, M. (2021). A High-Performance Multispectral Adaptation GAN for Harmonizing Dense Time Series of Landsat-8 and Sentinel-2 Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Q2/2021
Sedona, R., Barakat, C., Einarsson, P., Hassanian, Cavallaro, G., R., Book, M., Neukirchen, H., Lintermann, A. & Riedel, M. (2021). Practice and Experience in using Parallel and Scalable Machine Learning with Heterogenous Modular Supercomputing Architectures. 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
DOI:10.1109/IPDPSW52791.2021.00019 | JuSER (Open Access)